
Verifiable Timed Signatures Made Practical

Sri Aravinda Krishnan Thyagarajan1 Adithya Bhat2 Giulio Malavolta3

Nico Döttling4 Aniket Kate2 Dominique Schröder1

1Friedrich Alexander Universität Erlangen-Nürnberg
2Purdue University, USA

3UC Berkeley and Carnegie Mellon University
4CISPA Helmholtz Center for Information Security

November 13, 2020

Abstract

A verifiable timed signature (VTS) scheme allows one to time-lock a signature on a known
message for a given amount of time T such that after performing a sequential computation
for time T anyone can extract the signature from the time-lock. Verifiability ensures that
anyone can publicly check if a time-lock contains a valid signature on the message without
solving it first, and that the signature can be obtained by solving the same for time T.

This work formalizes VTS, presents efficient constructions compatible with BLS, Schnorr,
and ECDSA signatures, and experimentally demonstrates that these constructions can be
employed in practice. On a technical level, we design an efficient cut-and-choose protocol
based on the homomorphic time-lock puzzles to prove the validity of a signature encapsulated
in a time-lock puzzle. We also present a new efficient range proof protocol that significantly
improves upon existing proposals in terms of the proof size, and is also of independent
interest.

While VTS is a versatile tool with numerous existing applications, we demonstrate VTS’s
applicability to resolve three novel challenging issues in the space of cryptocurrencies. Specif-
ically, we show how VTS is the cryptographic cornerstone to construct: (i) Payment channel
networks with improved on-chain unlinkability of users involved in a transaction, (ii) multi-
party signing of transactions for cryptocurrencies without any on-chain notion of time and
(iii) cryptocurrency-enabled fair multi-party computation protocol.

Contents

1 Introduction 1
1.1 Applications of VTS . 1
1.2 Our Contributions . 3

2 Technical Overview 4
2.1 Related Work . 7

3 Preliminaries 7
3.1 Cryptographic Building Blocks . 8
3.2 Verifiable Timed Signatures . 9

4 Efficient VTS Constructions 10
4.1 Verifiable Timed BLS Signatures (VT-BLS) . 11
4.2 Verifiable Timed Schnorr Signatures (VT-Schnorr) 12
4.3 Verifiable Timed ECDSA Signatures (VT-ECDSA) 12
4.4 Batching Puzzle Solving . 15
4.5 Range Proof for Homomorphic Time-Lock Puzzles 16
4.6 On The Setup Assumption . 16

5 Applications Of VTS 17
5.1 Payment Channel Network (PCNs) . 17

5.1.1 Payment Channels Without Time On Blockchain 19
5.2 Multisig Without Time On Chain . 23
5.3 Fair Computation Without Timing On Chain . 26

5.3.1 Claim and Refund Functionality . 27

6 Performance Evaluation 31
6.1 Setup and Preliminaries . 31
6.2 Performance Evaluation . 33
6.3 VTS and Lightning Network . 33

7 Conclusion And Future Work 35

A Cryptographic Building Blocks 40
A.1 Digital Signatures . 40
A.2 Time-Lock Puzzles . 40
A.3 Homomorphic Time-Lock Puzzles . 41

B More Related Work 42

C Security analysis of VTS constructions 42
C.1 Proof of Theorem 1 and Theorem 2 . 42
C.2 Proof of Theorem 3 and Theorem 4 . 43
C.3 Proof of Theorem 5 and Theorem 6 . 44

D Proof Analysis for Range Proofs 45

E Verifiable Timed Commitment 46

F Security Analysis for PCN based on VTS 49
F.1 Formalization of Payment Channel Network (PCNs) 49

3

1 Introduction

Timed cryptography studies a general class of primitives that allows a sender to send informa-
tion to the future. After a pre-determined amount of time, anyone (possibly at the end of a
sequential computation) can learn the enclosed secret. Time-Lock puzzles [11, 47, 53], Timed
Commitment [15], and Timed release of Signatures [27] are prominent primitives in this class
with wide-ranging applications [4, 15,34,39].

For many applications, it is important that the receiver is convinced that the message of the
sender is well-formed (e.g., it contains a valid signature on a certain message) before committing
a large amount of time and resources to solve the corresponding puzzle. Therefore, it is natural
to augment the above mentioned primitives with the notion of verifiability. In this work we
formally introduce the notion of Verifiable Timed Signature Scheme (VTS), where a sender
commits to a signature σ on a known message in a verifiable and extractable way1. Verifiability
refers to the property that one can publicly check that a valid signature is contained in the
commitment, whereas extractability guarantees that the signature σ can be recovered from the
commitment in time T.

1.1 Applications of VTS

Although the utility of VTS in classical applications such as fair contract signing is already well
known [15,27], we observe that it can further solve challenging privacy and compatibility prob-
lems in the cryptocurrency (or blockchain) space. Concretely, we discuss three new applications
of VTS.

Applications I: Privacy-Preserving Payment Channels Networks. Bitcoin [50] and
most permissionless blockchains are inherently limited in transaction throughput and typically
have large fees associated with each payment. Payment channels [2,52] have emerged as a promi-
nent scalability solution to mitigate these issues by allowing a pair of users to perform multiple
payments without committing every intermediate payment to the blockchain. Abstractly, a
payment channel consists of three phases: (i) Two users Alice and Bob open a payment channel
by adding a single transaction to the blockchain. Intuitively, this transaction promises that
Alice may pay up to a certain amount of coins to Bob, which he must claim before a certain
time T ; (ii) Within this time window, Alice and Bob may send coins from the joint address
to either of them by sending a corresponding transaction to the other user; (iii) The channel
is considered closed when the latest of the payment transactions is posted on the chain, thus
spending coins from the joint address.

An extension of payment channels is payment channel networks (PCN) [52]. As shown
in Figure 1, in a PCN, users can perform multi-hop payments, i.e. coins can be transferred to
other users in the network without having a common payment channel, routing the payment
through a set of intermediate users. For Bitcoin, the atomicity of these payments is ensured
using multi-hop locks (in particular, Hash Time Lock Contracts or HTLCs) which guarantee
the transfer of v coins if a certain condition is satisfied (e.g., for HTLC, the knowledge of a
pre-image x such that H(x) = y, where H is a cryptographic hash function) before time T.
PCNs are not only well-studied in the academia [6, 22, 23, 45, 46, 56], but also in industry and
the Lightning Network (LN) [3, 52] has emerged as the most prominent example.

PCNs are found to be no better than Bitcoin in terms of transaction privacy. By using
anonymous multi-hop locks (AMHL) [45, 46], one can make HTLCs unlinkable from the per-
spective of an on-chain observer, however these proposals do not achieve strong unlinkability

1In [15], the notion of verifiability for the timed signature is implicitly assumed to exist. We explicitly formalize
it and propose efficient protocols for real world applications.

1

Sender ReceiverU1 U2 U3 U4 U5

95,� + 5Δ

94,� + 4Δ

93,� + 3Δ

92,� + 2Δ

91,� + Δ

90,�

Figure 1: A multi-hop transaction over a payment channel network. Dotted lines with two
arrowheads indicate payment channels between successive users. In this example, the Sender
pays 90 coins to the Receiver through five intermediate users, each collecting a fee of one coin.
Each payment hop is associated with a decreasing expiry time (T + c∆, for c ∈ {0, . . . , 5}).

of hops as the time-lock information T is still present in the contract: To avoid race condi-
tions to redeem the coins, the time-lock for the i-th hop is ∆ larger than the time-lock for hop
i+ 1 (see Figure 1). An attacker observing the on-chain contracts can correlate this time-lock
information and detect if certain payments belong to the same multi-hop payment path.

We observe that VTS can solve this privacy issue, by completely removing the time-lock
information from the payment transactions. At the time of opening a channel between Alice and
Bob, Bob signs an additional “steal” transaction for v coins (as in the HTLC) for Alice using a
VTS (with time parameter TA). Alice is then guaranteed that she can redeem these coins after
time TA, by forcing the opening of the VTS: If Bob tried to transfer the coins to his address after
time TA, then Alice would immediately steal them, using the “steal” transaction also signed by
Bob. To avoid race conditions, we introduce an artificial delay δ to the payment to Bob. It is
important to observe that δ is fixed and in particular is identical for all payment channels. This
time delay gives Alice a sufficient window to post the steal transaction with Bob’s signature
from the VTS (in case of Bitcoin with a relative time-lock using checkSequenceVerify OP
CODE.

For PCNs, apart from Alice, Bob obtains a steal transaction and a VTS (with timing
hardness TB) from Carol, who in turns is sent a steal transaction and a VTS (with timing
hardness TC) from Dave. The timing hardnesses of these VTS’s are structured similarly to the
time-locks for HTLC, i.e. TA > TB > TC . The important difference is that, even though the
time-locks still have the correlation, they are never posted on-chain.

Application II: Multisig Transactions. Computations with multiple parties in blockchains
often rely on transactions with multisig scripts, i.e. conditions that require multiple signatures
in order to authenticate transactions. Bitcoin offers t-out of-n multisig scripts that accepts
signed transactions from any t-sized subsets of the n users. These have wide ranging applica-
tions including [12, 48]. This has motivated a large body of literature on improving security
and efficiency of multisig protocols [8, 12, 19, 48] and more efficient constructions of threshold
signature schemes [29, 41, 42, 58, 59]. All of these works however (implicitly) assume an expira-
tion time T for the multisig scripts. This is used to ensure that, even if a large threshold of
participants go offline, the coins of the few remaining users are not locked indefinitely. Therefore
the scope of multisig-based protocol is limited to those cryptocurrencies that support on-chain
notion of time. Those blockchains that do not offer the time-lock functionality are therefore not
compatible with these protocols.

We propose to use VTS to bypass this problem. Prior to transferring the funds to the
multisig address, all users agree on a default redeem transaction. The redeem transaction
transfers the coins from the multisig address back to the respective users. It is signed using
a VTS with time parameter T. Once the funds are transferred to the multisig address, users

2

can jointly spend coins by negotiating new refund transactions for which a VTS is given, using
a progressively smaller time parameter. If at any point in time, less then t signatures are
exchanged by the users, the VTSs exchanged in the previous round make sure that the funds
will be redistributed consistently across all participants. Eventually all parties are going to
redeem the coins agreed on the previous “stable” state. As an interesting byproduct of our
solution, multisig transactions are also indistinguishable from any other kind of transaction, to
the eyes of an external observer. This is because the expiration time is never uploaded on-chain.

Application III: Fair Multi-party Computation. In the multi-party computation (MPC)
settings, a computation is fair if either all parties involved receive the output or none of them
does. Recent efforts [10, 36, 37] have proposed leveraging blockchains as a solution to achieve
fairness. The general idea is to incentivize users to complete the protocol execution by enforcing
some financial penalty in case they fail to do so. More concretely, the participants lock a certain
amount of coins in addresses addr i from which funds can be spent if user Ui reveals a witness to
some condition before time T. Alternatively, if all participants sign the transaction, these coins
can be spent and redistributed among the other users after time T. Intuitively, an adversary
loses coins if he does not reveal the witness, which in turn is crucial to learn the output of
the computation. As a compensation, the coins of the adversary are given to the honest users
involved in the computation, which incentivizes publishing of such witness, thus ensuring that
other users also learn the output of the computation.

This alternate way of spending is negotiated in a payout phase in the form of payout trans-
actions, where all users generate signatures and exchange them with each other. However, these
payout transactions are time-locked on chain and are only valid after time T. This ensures that
other users cannot take the coins and distribute among themselves before the termination of
the protocol.

One of the major shortcomings of this proposal (along with similar privacy issues as de-
scribed above) is that this solution is incompatible with blockchains that do not offer the
time-lock functionality, such as Zcash [9] and Monero [38]. VTS2 can be used to solve such
a limitation as follows: All participants sign their payout transaction using a VTS, instead of
sending signatures in plain. The privacy of VTS ensures that no party learns the signatures on
the payout transaction before time T.

1.2 Our Contributions

In summary, in this work we define the notion of verifiable timed signatures, propose a number
of efficient constructions, and rigorously design and analyze the various applications discussed
above. More concretely, our contributions are as follows.

Definitions. We formalize the notion of Verifiable Timed Signatures (VTS) (Section 3.2)
where the committer creates a commitment to a signature that can be solved and opened after
time T, along with a proof that certifies that the embedded signature is a valid signature on a
message with respect to the correct public key. Anyone can verify this proof and be convinced
of the validity of the commitment. In terms of security we require that the commitment and
the proof reveal no information about the embedded signature to any PRAM adversary whose
running time is bounded by T (privacy) and that an adversary should not be able to output a
valid proof to a commitment that does not embed a valid signature on a message with respect
to a public key (soundness).

2In this work we actually solve the problem using a slightly relaxed variant of VTS, i.e. Verifiable Timed
Discrete Logarithm where, instead of the signature, the signing key of signature scheme is committed to. This
makes it compatible with Zcash and Monero.

3

Efficient Constructions. We offer three efficient constructions for VTS (Section 4): VT-BLS,
VT-Schnorr and VT-ECDSA where the signatures being committed to are BLS, Schnorr and
ECDSA signatures, respectively. Our constructions do not require any modification to these
signature schemes. Our constructions exploit the group structure of these signature schemes
and combine threshold secret-sharing with a cut-and-choose type of argument to achieve prac-
tical performance. We also leverage the recently introduced linearly homomorphic time-lock
puzzles [47] to reduce the number of puzzles to solve to one (Section 4.4) puzzle. Apart from
improving efficiency by decreasing the computational resources needed, this improves security
in applications where users may possess different amounts of parallel processors: A user with n
processors has no advantage over a user with one processor as they both need to solve only a
single puzzle for time T. We also present a concretely efficient construction of Verifiable Timed
Commitments (VTC) (Appendix E), where the signing key is committed instead. Our VTC
scheme is applicable to any signature scheme where the secret key is the discrete logarithm of
the public key.

Range Proofs. Along the way, we present efficient range proofs (Section 4.5) for proving that
the solution of a time-lock puzzle lies within some interval. In contrast with prior works, the
protocol batch-proves well-formedness of ` time-lock puzzles and the proof size is independent
of `. The protocol is generically applicable to all time-lock puzzles/ciphertexts that possess
plaintext- and randomness-homomorphism. Such a protocol might be of independent interest.

New Applications. Apart from classical applications such as fair contract signing [15], we
identify several applications for VTS where our constructions can be readily used. The primary
focus of this paper is on cryptocurrency-based applications where we wish to improve privacy
and compatibility of existing solutions. Specifically, (i) we show how to construct privacy-
preserving PCNs that prevent de-anonymizing attacks based on on-chain timing correlations,
(ii) we construct single-hop payment channels without requiring any time-lock functionality
from the underlying blockchain, (iii) we present solutions (with different efficiency tradeoffs)
to realize blockchain-based fair computation without requiring the time-lock functionality from
the blockchain, and (iv) we propose a new way to construct multisig contracts from VTS which
does not require any time-lock functionality from the corresponding blockchain.

Implementation. We implement our proposed constructions by building an LHTLP library,
the range proof, and the other cryptographic primitives. We find that all LHTLP operations
are efficient. The homomorphic batching adds a small overhead while outputting a single puzzle
to solve. As the most computationally relevant operation, we also estimate the cost of commit
and verify operations of our VTS constructions. Results (in an unoptimized implementation)
indicate that for practical purposes with a low powered machine, setting the statistical security
parameter n = 40, our VT-ECDSA verifier takes 9.942s with a soundness error of 7.25× 10−12.

2 Technical Overview

On a high level, our VTS schemes are built by computing a standard digital signature σ on
a message m and emcoding it into a time-lock puzzle. Then a non-interactive zero-knowledge
(NIZK) proof is used to prove that the puzzle contains a valid signature on m. There are
several non-trivial components in our construction, such as encoding the signatures inside the
puzzles that is compatible with our efficient instantiation of a non-interactive zero-knowledge
proof, novel use of homomorphic operations on the puzzles to ensure better security, all while
ensuring that our construction can work with a large class of signature schemes. Throughout
the following overview, we describe the VTS as an interactive protocol between a committer
and a verifier, which can be made non-interactive using the Fiat-Shamir transformation [25].

4

High-Level Overview. To illustrate our approach, let us consider the BLS signature
scheme [14], the other schemes follow a similar blueprint. Recall that BLS public-secret key
pair are of the form (gα0 , α) and the signature on a message m is σ := H(m)α, where g0 ∈ G0

is a generator of G0, α ∈ Zq, and H : {0, 1}∗ → G1 is a full domain hash function. The ver-
ification algorithm checks if e(g0, σ) = e(gα0 , H(m)). To generate a VTS on a message m, the
committer secret shares the signature σ together with the public using a t-out-of-n threshold
sharing scheme: The first t − 1 shares are defined as σi := H(m)αi for a uniformly sampled
αi ∈ Zq. It is important to observe that such a signature σi is a valid BLS signature on m
under the public-key pk i = gαi0 . The rest of the shares are sampled consistently using Lagrange
interpolation in the exponent, i.e., for i ∈ {t, t+ 1, . . . , n} we set

σi =

 σ∏
j∈[t−1] σ

`j(0)
j

`i(0)
−1

where `i(·) is the i-th Lagrange polynomial basis. Note that this is a valid signature on m under
the corresponding public-key defined as

pk i =

 pk∏
j∈[t−1] h

`j(0)
j

`i(0)
−1

.

This ensures that we can reconstruct (via Lagrange interpolation) the valid signature σ from
any t-sized set of shares of the signature. Analogously, we can reconstruct the public key pk
from any set of shares of size at least t.

The committer then computes a time-lock puzzle Zi with time parameter T for each share
separately. The first message consists of all puzzles (Z1, . . . , Zn) together with all public keys
(pk1, . . . , pkn) as defined above. The verifier then chooses a random set I of size (t − 1). For
the challenge set, the committer opens the time-lock puzzles {Zi}i∈I and reveals the underlying
message σi (together with the corresponding random coins) that it committed to. The verifier
accepts the commitment as legitimate if all of the following conditions are satisfied:

1. All {σi}i∈I are consistent with the corresponding public-key pk , i.e., e(g0, σi) = e(pk i, H(m)).

2. All public keys {pkj}j /∈I reconstruct to the public key of the scheme, i.e.,
∏
i∈I pk

`i(0)
i ·

pk
`j(0)
j = pk .

Taken together, these conditions ensure that, as long as at least one of the partial signatures in
the unopened puzzles is consistent with respect to the corresponding partial public-key, then we
can use it to reconstruct σ. This means that a malicious prover would need to guess the set I
ahead of time to pass the above checks without actually committing a valid signature σ. Setting
t and n appropriately we can guarantee that this happens only with negligible probability.

We exploit similar structural features in the case of Schnorr and ECDSA signatures. In case
of Schnorr we additionally secret share the randomness used in signing and in ECDSA we do
not secret share the public key but only the randomness and the signature.

Reducing the Work of the Verifier. As described above, our protocol requires the verifier
to solve ñ = (n− t+ 1) puzzles to force the opening of a VTS. Ideally, we would like to reduce
his workload to the minimal one of solving a single puzzle. If this was not the case, some appli-
cations may have users with ñ processors who can solve ñ puzzles in parallel and spending time
T in total. While other users with less number of processors will have to solve the puzzles one
by one thereby spending more time than T. This could drastically affect security in the case

5

of PCN for instance, where a honest user with less number of processors may be still solving
the VTS while his steal transactions becomes invalid on the chain. Our observation is that
if the time-lock puzzle has some homomorphic properties, then this can indeed be achieved.
Specifically, if we instantiate the time-lock puzzle with a recently introduced linearly homo-
morphic construction [47], then we can use standard packing techniques to compress ñ puzzles
into a single one Section 4.4. Concretely, the verifier, on input (Z1, . . . , Zñ) homomorphically
evaluates the linear function

f(x1, . . . , xñ) =
ñ∑
i=1

2(i−1)·λ · xi

to obtain a single puzzle Z̃, which he can solve in time T. Observe that, once the puzzle is
solved, all signatures can be decoded from the bit-representations of the resulting message.
However this transformation comes with two caveats:

1. The message space of the homomorphic time-lock puzzle must be large enough to accommo-
date for all ñ signatures.

2. The signatures σi encoded in the the input puzzles must not exceed the maximum size of a
signature (say λ bits).

Condition (1) can be satisfied instantiating the linearly homomorphic time-lock puzzles with a
large enough message space. On the other hand, condition (2) is enforced by including a range
NIZK, which certifies that the message of each time-lock puzzles falls into the range [0, 2λ].

Efficient Range Proofs. What is left to be discussed is how to implement the range NIZK
for homomorphic time-lock puzzle. In the following we outline a protocol that allows us to
prove the well-formedness of ` puzzles with proof size logarithmic in `. The proof is generically
applicable to any homomorphic time-lock puzzle (or even encryption scheme) that is linearly
homomorphic over both the plaintext space and the randomness space, i.e.

PGen(T,m; r) · PGen(T,m′; r′) = PGen(T,m+m′; r + r′).

Our proof system uses similar ideas as the range proof system of [43], but we are able to batch
range proofs for a large number ` of homomorphic time-lock puzzles in a proof which has size
independent of `.

For the sake of this overview, let us assume that we want to make sure that plaintexts lie in
an interval [−L,L]. However, to prove correctness and zero-knowledge we will need to require
that honest plaintexts actually lie in a much smaller range [−B,B], where B/L is negligible.
This will introduce a slack in the size of the time-lock puzzles, which for practical purposes is
roughly 50 bits.

We describe the protocol in its interactive form, although the actual instantiation is going
to be made non-interactive via the standard Fiat-Shamir transformation. The prover is given
` puzzles (Z1, . . . , Z`) together with each corresponding plaintext xi and randomness ri. The
prover samples a drowning term y uniformly from the interval [−L/4, L/4], then computes
time-lock puzzles D = PGen(T, y; r′) for some randomness r′. The verifier is given all puzzles
(including the one that contains the drowning term) and returns a random subset I of these
puzzles. The prover computes the homomorphic sum of the selected puzzles

Z =
∏
i∈I

Zi ·D =
∏
i∈I

PGen(T, xi; ri) · PGen(T, y; r′).

By the plaintext and randomness homomorphism, this is equal to

Z = PGen

(
T,
∑
i∈I

xi + y;
∑
i∈I

ri + r′

)
.

6

The prover computes the opening for Z, i.e.
∑

i∈I xi + y and
∑

i∈I ri + r′, and sends them to
the verifier. The verifier accepts if (i) Z is correctly computed (which he can check since he is
given the random coins) and if (ii) the plaintext

∑
i∈I xi+y lies within the interval [−L/2, L/2].

Given that B is sufficiently smaller than L, specifically B ≤ L/(4`) the protocol is correct. We
can further show that, if any of the input plaintexts is outside the range [−L,L], then the above
check fails with constant probability. Negligible soundness is then achieved by repeating the
above procedure k times in parallel. For zero-knowledge it suffices to observe that the random
term m̃ statistically hides any information about

∑
i∈I xi by a standard drowning argument,

given that B/L is negligible.

2.1 Related Work

Notice that VTS can also be seen as a “timed” variant of verifiably encrypted signatures [13,31],
with the difference that no trusted party is needed to recover the signature. Boneh and Naor [15]
give an interactive protocol to prove that a time-lock puzzle is well-formed. The verifier is
convinced that the sequential squaring is correctly performed. They identify several applications
of time-lock puzzles. Garay and Jakobsson [27] and later Garay and Pomerance [28] proposed
constructions where they construct special-purpose zero-knowledge proofs to convince a verifier
that the time-lock puzzle indeed has a valid signature embedded. However their construction
requires both the prover and the verifier to locally store a list of group elements as a “time-line”
whose length is equal to the number of timed checkpoints. For instance, the time-line consists
of T group elements if the largest timing hardness is 2T. And in a multi-user system, a single
user may have to store several time-lines of several other users with whom he has interaction.
If they run a one-time setup for the whole system, it needs to be accompanied by a proof of
well-formedness of the time-line. To the best of our knowledge, these protocols have never been
implemented and in contrast, with our construction, the setup consist of an RSA modulus N
and can be shared across all users in the system or sampled by the signer, depending on the
application.

Banasik, Dziembowski and Malinowski [7] propose a cut and choose technique to prove that
a time-lock puzzle has a valid signing key embedded. The prover sends a puzzles with signing
keys for a public keys and the verifier asks to open a − b of them. The verifier checks if the
opened puzzles are well-formed and solves the rest of the puzzles. The verifier can finally post a
transaction spending from a ’b-out of-2b−1’ multisig script where b−1 of the keys are verifier’s
keys. For a 2−48 security they require b = 8 which means the spending transaction consists
of 8 signatures and 15 public keys. Our VTS and VTC constructions would only require the
solver to solve a single puzzle after homomorphic evaluation and post a transaction with single
signature for a corresponding public key. As stated before, given that they require b puzzles to
be solved, this could lead problems in applications such as PCN if users have different parallel
processing power. Moreover, since signing keys are embedded, parties in their protocol can
learn the signing keys of other parties after a given time, contrary to our VTS where parties
only learn signatures. There may be scenarios where parties may not wish to share their signing
keys: Learning a single signing key could compromise security of the entire wallet of the party [1]
(especially in cases of hierarchical wallets).

3 Preliminaries

We denote by λ ∈ N the security parameter and by x ← A(in) the output of the algorithm
A on input in. We denote by A(in; r) if algorithm A is randomized with r ← {0, 1}∗ as its
randomness. We omit this randomness where it is obvious and only mention it explicitly when

7

required. We denote the set {1, . . . , n} by [n].

3.1 Cryptographic Building Blocks

We recall the cryptographic primitives used in our protocol and refer to Appendix A for formal
definitions and security.

Digital Signatures. A digital signature scheme consists of the following triple of efficient
algorithms: A key generation algorithm KGen(1λ) that takes as input the security parameter
1λ and outputs the public/secret key pair (pk , sk). The signing algorithm Sign(sk ,m) inputs
a secret key and a message m ∈ {0, 1}∗ and outputs a signature σ. The verification algorithm
Vf(pk ,m, σ) outputs 1 if σ is a valid signature on m under the public key pk , and outputs
0 otherwise. We require standard notions of correctness and unforgeability for the signature
scheme [33].

Time-Lock Puzzles. A time-lock puzzle (PGen,PSolve) allows one to conceal a value for a
certain amount of time [53]. Intuitively, time-lock puzzles guarantee that a puzzle can be solved
in polynomial time, but strictly higher than T ∈ N. The only efficient candidate construction
of time-lock puzzles was given by Rivest, Shamir, and Wagner and is based on the sequential
squaring assumption [53]. The puzzle generation PGen is a probabilistic algorithm that takes
as input a hardness-parameter T, a solution s ∈ {0, 1}∗ and some random coins r, and outputs
a puzzle Z. The solving algorithm PSolve takes as input a puzzle Z and outputs a solution
s. In this context, we refer to Parallel Random Access Machines (PRAM): which is a model
considered for most of the parallel algorithms. Multiple processors are attached to a single block
of memory and n number of processors can perform independent operations on n number of
data in a particular unit of time. The security requirement is that for every PRAM adversary
A of running time ≤ Tε(λ), and every pair of solutions (s0, s1) ∈ {0, 1}2, it cannot distinguish
a puzzle Z that is generated with solution s0 from a puzzle generated with solution s1 where
the timing hardness of the puzzle is T except with negligible probability.

Homomorphic Time-Lock Puzzles. Homomorphic Time-Lock Puzzles (HTLPs) were pro-
posed by Malavolta and Thyagarajan [47]. An HTLP is a tuple of four algorithms (HTLP.PSetup,
HTLP.PGen,HTLP.PSolve,HTLP.PEval) that lets one perform homomorphic operations over dif-
ferent time-lock puzzles. Apart from the two algorithms for a time-lock puzzle, HTLPs addi-
tionally have a setup algorithm PSetup and a homomorphic evaluation algorithm PEval: PSetup
takes as input a security parameter 1λ and a time hardness parameter T, and outputs public
parameters pp, and PEval takes as input a circuit C : {0, 1}n → {0, 1}, public parameters pp
and a set of n puzzles Z1, . . . , Zn and outputs a puzzle Z ′. The puzzle generation and solv-
ing algorithms also take the public parameters pp as input. The homomorphism property for
computing a circuit C states that Pr

[
HTLP.PSolve(pp, Z ′) 6= C(s1, . . . , sn)

]
≤ µ(λ), where

Z ′ ← HTLP.PEval(C, pp, Z1, . . . , Zn) and Zi ← HTLP.PGen(pp, si) for (s1, . . . , sn) ∈ {0, 1}n.
In their work, they show an efficient construction that is linearly homomorphic over the ring

ZNs , where N is an RSA modulus and s is an arbitrary constant. The scheme is perfectly correct
and it satisfies the notion of randomness homomorphism, which is needed for our purposes.

Non-Interactive Zero-Knowledge. Let R : {0, 1}∗ × {0, 1}∗ → {0, 1} be a n NP -witness-
relation with corresponding NP -language L := {x : ∃w s.t. R(x,w) = 1}. A non-interactive
zero-knowledge proof (NIZK) [17] system for R is initialized with a setup algorithm ZKsetup(1λ)
that, on input the security parameter, outputs a common reference string crs. A prover can show
the validity of a statement x with a witness w by invoking ZKprove(crs, x, w), which outputs a
proof π. The proof π can be efficiently checked by the verification algorithm ZKverify(crs, x, π).
We require a NIZK system to be (1) zero-knowledge, where the verifier does not learn more
than the validity of the statement x, and (2) simulation sound, where it is hard for any prover

8

to convince a verifier of an invalid statement (chosen by the prover) even after having access to
polynomially many simulated proofs for statements of his choosing.

Threshold Secret Sharing. Secret sharing is a method of creating shares of a given secret
and later reconstructing the secret itself only if given a threshold number of shares. Shamir [55]
proposed a threshold secret sharing scheme where the SS.share algorithm takes a secret s ∈ Zq
and generates shares (s1, . . . , sn) each belonging to Zq. The SS.reconstruct algorithm takes as
input at least t shares and outputs a secret s. The security of the secret sharing scheme demands
that knowing only a set of shares smaller than the threshold size does not help in learning any
information about the choice of the secret s.

3.2 Verifiable Timed Signatures

A timed signature [15] is a scheme when a committer commits to a signature on a message and
shares it with some user. After some time T has passed, the committer reveals the committed
signature to the user. If he fails to reveal the signature, then the user is guaranteed to forcibly
retrieve the signature from the timed commitment given initially. We explicitly state the notion
of verifiability for a timed signature, and therefore refer to it as a Verifiable Timed Signature
(VTS), which lets the user verify if the signature σ committed to in C can be obtained by
ForceOp in time T and is indeed a valid signature on the message m, that is, if Vf(pk ,m, σ) = 1
in a non-interactive manner. This verifiability ensures that the user is guaranteed to obtain a
valid signature from the commitment C which he can retrieve using ForceOp. For the sake of
clarity, we let Commit additionally output a proof π for the embedded signature to be a valid
signature on the message m with respect to pk and we have a Vrfy algorithm that is defined
below.

Definition 1 (Verifiable Timed Signatures). A VTS for a signature scheme Π = (KGen, Sign,
Vf) is a tuple of four algorithms (Commit,Vrfy,Open,ForceOp) where:

• (C, π)← Commit(σ,T): the commit algorithm (randomized) takes as input a signature σ
(generated using Π.Sign(sk ,m)) and a hiding time T and outputs a commitment C and a
proof π.

• 0/1 ← Vrfy(pk ,m,C, π): the verify algorithm takes as input a public key pk, a message
m, a commitment C of hardness T and a proof π and accepts the proof by outputting 1 if
and only if, the value σ embedded in c is a valid signature on the message m with respect
to the public key pk (i.e., Π.Vf(pk ,m, σ) = 1). Otherwise it outputs 0.

• (σ, r) ← Open(C): the open phase where the committer takes as input a commitment C
and outputs the committed signature σ and the randomness r used in generating C.

• σ ← ForceOp(C): the force open algorithm takes as input the commitment C and outputs
a signature σ.

The security requirements for a VTS are that (soundness) the user is convinced that, given
C, the ForceOp algorithm will produce the committed signature σ in time T and that (privacy)
all PRAM algorithms whose running time is at most t (where t < T) succeed in extracting σ
from the commitment C and π with at most negligible probability. We formalize the definition
of soundness below.

Definition 2 (Soundness). A VTS scheme VTS = (Commit,Vrfy,Open,ForceOp) for a signature
scheme Π = (KGen, Sign,Vf) is sound if there is a negligible function negl such that for all

9

probabilistic polynomial time adversaries A and all λ ∈ N, we have:

Pr

b1 = 1 ∧ b2 = 0 :

(pk ,m,C, π,T)← A(1λ)
(σ, r)← ForceOp(C)
b1 := Vrfy(pk ,m,C, π)
b2 := Π.Vf(pk ,m, σ)

 ≤ negl(λ).

We say that a VTS is simulation-sound if it is sound even when the prover has access to
simulated proofs for (possibly false) statements of his choice; i.e., the prover must not be able
to compute a valid proof for a fresh false statement of his choice. In the following definition we
present the definition of privacy.

Definition 3 (Privacy). A VTS scheme VTS = (Commit,Vrfy,Open,ForceOp) for a signature
scheme Π = (KGen,Sign,Vf) is private if there exists a PPT simulator S, a negligible function
negl , and a polynomial T̃ such that for all polynomials T > T̃, all PRAM algorithms A whose
running time is at most t < T, all messages m ∈ {0, 1}∗, and all λ ∈ N it holds that∣∣∣∣∣∣∣∣∣∣

Pr

A(pk ,m,C, π) = 1 :
(pk , sk)← Π.KGen(1λ)
σ ← Π.Sign(sk ,m)

(C, π)← Commit(σ,T)

−Pr

[
A(pk ,m,C, π) = 1 :

(pk , sk)← Π.KGen(1λ)
(C, π,m)← S(pk ,T)

]
∣∣∣∣∣∣∣∣∣∣
≤ negl(λ).

4 Efficient VTS Constructions

In the following sections we construct VTS for BLS, Schnorr and ECDSA signatures. The
key ingredients for constructing VTS are time-lock puzzles, specifically we consider the Lin-
early-HTLP [47] (LHTLP.PSetup, LHTLP.PGen, LHTLP.PSolve, LHTLP.PEval) and public coin
interactive zero-knowledge proofs for the language L described as follows.

L :=

{
stmt = (pk ,m,Z,T) : ∃wit = (σ, r) s.t.
(Vf(pk ,m, σ) = 1) ∧ (Z ← LHTLP.PGen(T, σ; r))

}
The Commit algorithm embeds the signatures inside time-lock puzzles and uses the zero-
knowledge proof system for L to prove the validity of the time-locked signature. In practice
all of the schemes will be made non-interactive using the Fiat-Shamir transformation [25]. We
additionally make use of a zero-knowledge proof system (ZKsetup,ZKprove,ZKverify) for the
language Lrange as defined below. Intuitively, the language consists of all puzzles whose solution
lies in some range [a, b]. We give an efficient instantiation of this proof system in Section 4.5.

Lrange :=

{
stmt = (Z, a, b,T) : ∃wit = (σ, r) s.t.
(Z ← LHTLP.PGen(T, σ; r)) ∧ (σ ∈ [a, b])

}
In all protocols described in Figures 2 to 4 we let n be a statistical security parameter and set
t := n/2 + 1. We let |σ| = λ is the max number of bits of the signature σ. Define a hash
function H ′ : {0, 1}∗ → I ⊂ [n] with |I| = t − 1 modeled as a random oracle. Throughout the
following description, we make the simplifying assumption that the ForceOp algorithm solves
ñ = (n−t+1) puzzles in parallel. In Section 4.4 we show how to reduce the number of puzzles to
solve to a single puzzle exploiting the (linear) homomorphic evaluation algorithm of time-lock
puzzles.

10

Setup: On input 1λ the setup algorithm does the following.

– Run ZKsetup(1λ) to generate crs range
– Generate the public parameters pp← LHTLP.PSetup(1λ,T)
– Output crs := (crs range, pp)

Commit and Prove: On input (crs,wit) the Commit algorithm does the following.

– Parse wit := σ, crs := (crs range, pp), pk as the BLS public key, and m as the message to be
signed

– For all i ∈ [t− 1] sample a uniform αi ← Zq and set σi = H(m)αi hi := gαi0
– For all i ∈ {t, . . . , n} compute

σi =

 σ∏
j∈[t−1] σ

`j(0)
j

`i(0)
−1

, hi =

 pk∏
j∈[t−1] h

`j(0)
j

`i(0)
−1

where `i(·) is the i-th Lagrange polynomial basis.
– For i ∈ [n], generate puzzles with corresponding range proofs as shown below

ri ← {0, 1}λ, Zi ← LHTLP.PGen(pp, σi; ri)

πrange,i ← ZKprove(crs range, (Zi, 0, 2
λ,T), (σi, ri))

– Compute I ← H ′ (pk , (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n))
– Output C := (Z1, . . . , Zn,T) and π := ({hi, πrange,i}i∈[n], I, {σi, ri}i∈I)

Verification: On input (crs, pk ,m,C, π) the Vrfy algorithm does the following.

– Parse C := (Z1, . . . , Zn,T), π := ({hi, πrange,i}i∈[n], I, {σi, ri}i∈I) and crs := (crs range, pp)
– If any of the following conditions is satisfied output 0, else return 1:

1. There exists some j /∈ I such that
∏
i∈I h

`i(0)
i · h`j(0)j 6= pk

2. There exists some i ∈ [n] such that ZKverify(crs range, (Zi, 0, 2
λ,T), πrange,i) 6= 1

3. There exists some i ∈ I such that Zi 6= LHTLP.PGen(pp, σi; ri) or
e(g0, σi) 6= e(hi, H(m))

4. I 6= H ′ (pk , (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n))

Open: The Open algorithm outputs (σ, {ri}i∈[n]).
Force Open: The ForceOp algorithm take as input C := (Z1, . . . , Zn,T) and works as follows:

– Runs σi ← LHTLP.PSolve(pp, Zi) for i ∈ [n] to obtain all signatures. Notice that since t− 1
puzzles are already opened by the committer, this only means that ForceOp has to solve
only (n− t+ 1) puzzles.

– Output σ :=
∏
j∈[t](σj)

`j(0) where wlog., the first t signatures are valid shares.

Figure 2: VT-BLS Signatures

4.1 Verifiable Timed BLS Signatures (VT-BLS)

Let (G0,G1,Gt) be a bilinear group of prime order q, where q is a λ bit prime. Let e be an
efficiently computable bilinear pairing e : G0 × G1 → GT , where g0 and g1 are generators of

11

G0 and G1 respectively. Let H be a hash function H : {0, 1}∗ → G1 modeled as a random
oracle. We briefly recall here the BLS construction [14] and our VT-BLS protocol is described
in Figure 2.

• (pk , sk)← KGen(1λ): Choose α← Zq, set h← gα0 ∈ G0 and output pk := h and sk := α.
• σ ← Sign(sk ,m): Output σ := H(m)sk ∈ G1.
• 0/1← Vf(pk ,m, σ): If e(g0, σ) = e(pk , H(m)), then output 1 and otherwise output 0.

The following theorems show that our construction from Figure 2 satisfies privacy and
soundness. The formal proofs are deferred to Appendix C.1.

Theorem 1 (Privacy). Let (ZKsetup,ZKprove,ZKverify) be a NIZK for Lrange and let LHTLP.
be a secure time-lock puzzle. Then the protocol as described in Figure 2 satisfies privacy as
in Definition 3 in the random oracle model.

Theorem 2 (Soundness). Let (ZKsetup,ZKprove,ZKverify) be a NIZK for Lrange and let LHTLP.
be a time-lock puzzle with perfect correctness. Then the protocol as described in Figure 2 satisfies
soundness as in Definition 2 in the random oracle model.

4.2 Verifiable Timed Schnorr Signatures (VT-Schnorr)

The Schnorr signature scheme [54] is defined over a cyclic group G of prime order q with
generator g, and use a hash function H modeled as a random oracle. We briefly recall the
construction here and VT-Schnorr protocol is given in Figure 3.

• (pk , sk)← KGen(1λ): Choose x← Zq and set sk := x and pk := gx.
• σ ← Sign(sk ,m; r): Sample a randomness r ← Zq to compute R := gr, c := H(gx, R,m), s :=
r + cx and output σ := (R, s).

• 0/1← Vf(pk ,m, σ): Parse σ := (R, s) and then compute c := H(pk , R,m) and if gs = R · pk c

output 1, otherwise output 0.

In the following theorems we show that our construction of VT-Schnorr from Figure 3
satisfies privacy and soundness. The formal proofs are deferred to Appendix C.2.

Theorem 3 (Privacy). Let (ZKsetup,ZKprove,ZKverify) be a NIZK for Lrange and let LHTLP.
be a secure time-lock puzzle. Then the protocol as described in Figure 3 satisfies privacy as
in Definition 3 in the random oracle model.

Theorem 4 (Soundness). Let (ZKsetup,ZKprove,ZKverify) be a NIZK for Lrange and let LHTLP.
be a time-lock puzzle with perfect correctness. Then the protocol as described in Figure 3 satisfies
soundness as in Definition 2 in the random oracle model.

4.3 Verifiable Timed ECDSA Signatures (VT-ECDSA)

The ECDSA signature scheme [32] is defined over an elliptic curve group G of prime order
q with base point (generator) g. The construction assumes the existence of a hash function
H : {0, 1}∗ → Zq and is given in the following. Our VT-ECDSA protocol is given in Figure 4.

• (pk , sk)← KGen(1λ): Choose x← Zq and set sk := x and pk := gx.
• σ ← Sign(sk ,m; r): Sample an integer k ← Zq and compute c ← H(m). Let (rx, ry) := R =
gk, then set r := rx mod q and s := (c+ rx)/k mod q. Output σ := (r, s).

• 0/1 ← Vf(pk ,m, σ): Parse σ := (r, s) and compute c := H(m) and return 1 if and only if
(x, y) = (gc · hr)s−1

and x = r mod q. Otherwise output 0.

12

Setup: Same as Figure 2.
Commit and Prove: On input (crs,wit) the Commit algorithm does the following.

– Parse wit := σ = (R, s), crs := (crs range, pp), pk as the Schnorr public key, and m as the
message to be signed

– For all i ∈ [t− 1] sample a uniform pair (xi, ki)← Zq and set hi := gxi , Ri := gki , and
si := ki + cxi where c = H(pk , R,m)

– For all i ∈ {t, . . . , n} compute

si =

s− ∑
j∈[t−1]

sj · `j(0)

 · `i(0)−1, hi =

 pk∏
j∈[t−1] h

`j(0)
j

`i(0)
−1

Ri =

 R∏
j∈[t−1]R

`j(0)
j

`i(0)
−1

where `i(·) is the i-th Lagrange polynomial basis
– For i ∈ [n], generate puzzles with corresponding range proofs as shown below (|σ| = λ is the

max number of bits of σ)

ri ← {0, 1}λ, Zi ← LHTLP.PGen(pp, si; ri)

πrange,i ← ZKprove(crs range, (Zi, 0, 2
λ,T), (si, ri))

– Compute I ← H ′ (pk , R, (h1, R1, Z1, πrange,1), . . . , (hn, Rn, Zn, πrange,n))
– Output C := (R,Z1, . . . , Zn,T) and π := ({hi, Ri, πrange,i}i∈[n], I, {si, ri}i∈I)

Verification: On input (crs, pk ,m,C, π) the Vrfy algorithm does the following.

– Parse C := (R,Z1, . . . , Zn,T), π := ({hi, Ri, πrange,i}i∈[n], I, {si, ri}i∈I), and
crs := (crs range, pp)

– If any of the following conditions is satisfied output 0, else return 1:

1. There exists some j /∈ I such that
∏
i∈I h

`i(0)
i · h`j(0)j 6= pk or

∏
i∈I R

`i(0)
i ·R`j(0)j 6= R

2. There exists some i ∈ [n] such that ZKverify(crs range, (Zi, 0, 2
λ,T), πrange,i) 6= 1

3. There exists some i ∈ I such that Zi 6= LHTLP.PGen(pp, si; ri) or gsi 6= Ri · hci
4. I 6= H ′ (pk , R, (h1, R1, Z1, πrange,1), . . . , (hn, Rn, Zn, πrange,n))

Open: The Open algorithm outputs ((R, s), {ri}i∈[n]).
Force Open: The ForceOp algorithm take as input C := (R,Z1, . . . , Zn,T) and works as
follows:

– Runs si ← LHTLP.PSolve(pp, Zi) for i ∈ [n] to obtain all signatures. ForceOp has to solve
only (n− t+ 1) puzzles, as t− 1 puzzles are already opened.

– Output (R, s :=
∑

j∈[t](sj) · `j(0)) where wlog., the first t are valid shares.

Figure 3: VT-Schnorr Signatures

13

Setup: Same as Figure 2.
Commit and Prove: On input (crs,wit) the Commit algorithm does the following.

– Parse wit := σ = (r, s), crs := (crs range, pp), pk as the ECDSA public key, and m as the
message to be signed

– Define R := (x, y) = (gc · hr)s−1
and B = gc · hr, where c = H(m)

– For all i ∈ [t− 1] sample a uniform pair si ← Zq and set Ri := Bsi

– For all i ∈ {t, . . . , n} compute

si =

s−1 − ∑
j∈[t−1]

sj · `j(0)

 · `i(0)−1, and

Ri =

 R∏
j∈[t−1]R

`j(0)
j

`i(0)
−1

where `i(·) is the i-th Lagrange polynomial basis
– For i ∈ [n], generate puzzles with corresponding range proofs as shown below (|σ| = λ is the

max number of bits of σ)

ri ← {0, 1}λ, Zi ← LHTLP.PGen(pp, si; ri)

πrange,i ← ZKprove(crs range, (Zi, 0, 2
λ,T), (si, ri))

– Compute I ← H ′ (pk , r, R, (R1, Z1, πrange,1), . . . , (Rn, Zn, πrange,n))
– Output C := (r,R, Z1, . . . , Zn,T) and π := ({Ri, πrange,i}i∈[n], I, {si, ri}i∈I)

Verification: On input (crs, pk ,m,C, π) the Vrfy algorithm does the following.

– Parse C := (r,R, Z1, . . . , Zn,T), π := ({Ri, πrange,i}i∈[n], I, {si, ri}i∈I), and
crs := (crs range, pp)

– If any of the following conditions is satisfied output 0, else return 1:

1. It holds that x 6= r mod q where (x, y) := R

2. There exists some j /∈ I such that
∏
i∈I R

`i(0)
i ·R`j(0)j 6= R

3. There exists some i ∈ [n] such that ZKverify(crs range, (Zi, 0, 2
λ,T), πrange,i) 6= 1

4. There exists some i ∈ I such that Zi 6= LHTLP.PGen(pp, si; ri) or Ri 6= (gc · hr)si
5. I 6= H ′ (pk , r, R, (R1, Z1, πrange,1), . . . , (Rn, Zn, πrange,n))

Open: The Open algorithm outputs ((r, s), {ri}i∈[n]).
Force Open: The ForceOp algorithm take as input C := (r,R, Z1, . . . , Zn,T) and works as
follows:

– Obtain si ← LHTLP.PSolve(pp, Zi) for i ∈ [n] same as in Figure 3.
– Output (r, s :=

∑
j∈[t](sj) · `j(0)) where wlog., the first t are valid shares.

Figure 4: VT-ECDSA Signatures

14

Notice that ECDSA signature has a non-linear verification unlike in Schnorr. Consequently,
notice that unlike VT-BLS and VT-Schnorr, the public key is not secret shared in VT-ECDSA.

The theorems below are for privacy and soundness of our VT-ECDSA protocol. The formal
proofs are deferred to Appendix C.3.

Theorem 5 (Privacy). Let (ZKsetup,ZKprove,ZKverify) be a NIZK for Lrange and let LHTLP.
be a secure time-lock puzzle. Then the protocol as described in Figure 4 satisfies privacy as
in Definition 3 in the random oracle model.

Theorem 6 (Soundness). Let (ZKsetup,ZKprove,ZKverify) be a NIZK for Lrange and let LHTLP.
be a time-lock puzzle with perfect correctness. Then the protocol as described in Figure 4 satisfies
soundness as in Definition 2 in the random oracle model.

4.4 Batching Puzzle Solving

As described above, our protocols require the verifier to solve ñ = (n − t + 1) puzzles in the
forced opening phase. In the following we show how to leverage the homomorphic properties
of the time-lock puzzles to ensure that the computation is reduced to the solution of a single
puzzle, regardless of the parameters n and t. This is crucial for our real world applications as
without HTLP, users with different degrees of parallelisms can solve ñ puzzles in different times:
A user with several computers can solve ñ puzzles in parallel effectively spending time T, and
a user with a single computer solves one puzzle after the other sequentially thus spending ñ ·T.

The high-level idea of exploiting the homomorphism of LHTLP is to pack all partial signa-
tures into a single puzzle, provided that the message space is large enough.

Concretely, the solver, given ñ puzzles Z1, . . . , Zñ encoding λ-bits signatures, homomorphi-
cally evaluates the linear function

f(x1, . . . , xñ) =
ñ∑
i=1

2(i−1)·λ · xi

to obtain the puzzle Z̃, which can be solved in time T. Observe that, once the puzzle is solved,
all signatures can be decoded from the bit-representations of the resulting plaintext. Note that
in order for this transformation to work we need two conditions to be satisfied:

1. The signatures σi encoded in the the input puzzles must not exceed the maximum size of a
signature (which we fix to λ bits)

2. The message space of the homomorphic time-lock puzzle must be large enough to accommo-
date for all ñ signatures.

Condition (1) is enforced by including a range NIZK, which certifies that the message of
each time-lock puzzles falls into the range [0, 2λ]. On the other hand we can satisfy condition
(2) by instantiating the linearly homomorphic time-lock puzzles with modulus N s, instead of
N2, for a large enough s. This is reminiscent of the Damg̊ard-Jurik [16] extension of Paillier’s
cryptosystem [51] and was already suggested in [47].

We stress that, even though we can increase the message space arbitrarily, the squaring
operations are still performed modulo N , which is important to reduce the gap between the
honest and the malicious solver: While squaring is conjectured to be a sequential operation
(in groups of unknown order), the computation of a single squaring operation can be internally
parallelized to boot the overall efficiency of the algorithm. For this reason it is important to
keep the modulus as small as possible, at least as far as squaring is concerned. For further
details, we refer the reader to [47].

15

Setup: An RSA modulus N , public parameters pp for HTLP, interval parameters L and B
with B < L. In this protocol we use k as a statistical security parameter.
Common input: Time-lock puzzles Z1, . . . , Z`.
Prover: On input wit, where wit := ((x1, r1), . . . , (x`, r`)) and xi ∈ [−B,B] such that for all i
it holds Zi ← HTLP.PGen(pp, xi; ri), the prover algorithm ZKprove does the following.

– Choose y1, . . . , yk ← [−L/4, L/4] and random coins r′1, . . . , r
′
k from their corresponding ring.

– For i = 1, . . . , k compute Di ← HTLP.PGen(pp, yi; r
′
i)

– Compute (t1, . . . , tk)← H(Z1, . . . , Z`, D1, . . . , Dk), where the ti ∈ {0, 1}`.
– For i = 1, . . . k compute vi ← yi +

∑`
j=1 ti,j · xj and wi ← r′i +

∑`
j=1 ti,j · rj

– Set π ← (Di, vi, wi)i∈[k] and output π

Verifier: On input π = (Di, vi, wi)i∈[k] the do the following.

– Compute (t1, . . . , tk)← H(Z1, . . . , Z`, D1, . . . , Dk)

– For i = 1, . . . k check if vi ∈ [−L/2, L/2], compute Fi ← Di ·
∏`
j=1 Z

ti,j
j and check if Fi =

HTLP.PGen(pp, vi;wi).
– If all checks pass output 1, otherwise 0.

Figure 5: NIZK protocol for well-formedness of a vector of homomorphic time-lock puzzles

4.5 Range Proof for Homomorphic Time-Lock Puzzles

In this Section we will provide a protocol which allows a prover to convince a verifier in zero-
knowledge that a list of linearly homomorphic time-lock puzzles are well-formed. This allows
us to homomorphically pack them into a single time-lock puzzle.

Our protocol follows the Fiat-Shamir heuristic and we prove soundness and zero-knowledge
in the random oracle model. For our construction we require a linearly homomorphic time-lock
puzzle which is also homomorphic in the random coins. The construction of [47] satisfies this
property.

In this Section we will always assume that plaintexts in a ring Zq are represented via the
central representation in [−q/2, q/2].

Our protocol ensures that every plaintext is in the interval [−L,L], given that 2L is smaller
than the modulus of the plaintext space. We remark that this protocol can be readily used to
prove that plaintexts are in a non-centered interval [a, b] via homomorphically shifting plaintexts
by −(a+b)/2, mapping the interval [a, b] to [−(b−a)/2, (b−a)/2]. Consequently, for the sake of
simplicity we will only discuss the case of centered intervals. In order to achieve zero-knowledge,
we actually need that the plaintexts come form a smaller interval [−B,B], where B < L. For
our protocols, this means that we need to use slightly looser intervals when batching time-lock
puzzles, but the efficiency of the schemes is otherwise unaffected. Formal analysis of soundness
and zero-knowledge of our protocol is deferred to Appendix D due to space constraints.

Correctness Correctness of the protocol can be established given that B ≤ L/(4`). Assuming
that x1, . . . , x` ∈ [−B,B], it follows that |yi +

∑
ti,jxj | ≤ ` · B + L/4 ≤ L/2, as B ≤ L/(4`).

Consequently the verifier’s checks will pass.

4.6 On The Setup Assumption

Our VTS protocols require a one-time setup that is computed once and for all by a trusted party.
A careful analysis of the structure of our protocol reveals that the setup consists of the common
reference string crs range for the range proof and the public parameters pp of the homomorphic

16

time-lock puzzles. In our instantiations, crs range consists of sampling a random oracle and pp is
a (uniformly sampled) RSA integer N = p · q, so the problem boils down to securely sampling
N , which is then made available to all parties. In general, this can be resolved by sampling N
via a multi-party computation protocol, for which many ad-hoc solutions exist [26].

However, when looking at specific applications of VTS, we do not always need to resort to the
power of multi-party computation. As an example, for applications where VTS are exchanged
only among pairs of users (such as payment channel networks or claim-and-refund) it suffices
to enforce that the verifier does not learn the factorization of N and therefore we can sample
N in key generation algorithm of the signer.

5 Applications Of VTS

In this section we discuss the major applications of VTS and that of Verifiable Timed Commit-
ments where the timed commitment is for the signing key instead of the signature. We consider
these applications in the realm of privacy in blockchain and cryptocurrency. In all the applica-
tions below, we assume that the underlying blockchain provides double spending security. This
is true in Bitcoin where the miners do not accept a transaction that conflicts with a transaction
that is already on chain. Our protocols work with bitcoin without needing any modification
to the Bitcoin protocol. Given that the scripting capabilities of Bitcoin are fairly restricted
and our protocols in other systems like Ethereum only become less complex given their Turing
complete scripting language.

5.1 Payment Channel Network (PCNs)

In this section we describe in detail how one could use VTS to build protocols that realize
FPCN ([45]) in a way that prevents time-lock information of payments in PCN from being
recorded on chain. Recall that in the state of the art PCN, each payment hop is bound to a
locktime script that ensures that the payment in the hop expires after some time. And farther
you go from the sender towards the receiver, this lock-time decreases. This is to ensure that
hop i expires before hop i− 1 and an honest user at the i-th position does not lose coins. Hop
expiration means that the payment in that hop is no longer valid for the receiver in that hop to
get coins from the sender of the hop. A pictorial description of a multi-hop PCN can be found
in Figure 1, where we can see how the expiry times are structured.

Intuition We realize the time-lock functionality using VTS, where we need to ensure that the
timing hardness of VTS for each hop along the path are ordered as before. Our protocol makes
black-box use of the Atomic Multi-Hop Locks (AMHL) ideal functionality FL from Figure 6
and a blockchain functionality FB. We define a publicly computable function addr : {0, 1}∗ →
{0, 1}λ, that takes a public key as input and outputs an address string for that public key. For
a public key pk∗, its address is denoted by addr(pk∗) = addr∗. For simplicity we start with an
example with two users and uni-directional payment: Alice and Bob open a payment channel
AB with capacity cap(AB) = c coins. Alice makes several payments to Bob. Our protocol goes
through the following steps:

1. For the k-th payment,

(a) Alice creates fresh address addrA,pay := addr(pkA,pay) and addrA,steal := addr(pkA,aid),
Bob creates fresh address addrB,pay := addr(pkB,pay).

(b) Alice and Bob negotiate the transaction PkAB(lid , xk, addrA,pay , addrB,pay , addrA,steal),
and Bob holds this transaction.

17

KeyGen(sid , Uj , {L,R})

upon invocation by Ui

sends (sid , Ui, {L,R}) to Uj

if b = ⊥ send ⊥ to Ui and abort

if L insert (Ui, Uj) into U and sends (sid , Ui, Uj) to Ui

if R insert (Uj , Ui) into U and sends (sid , Uj , Ui) to Ui

Lock(sid , lid)

upon invocation by Ui

if getStatus(lid) 6= init ∨ getLeft(lid) 6= Ui then abort

sends (sid , lid , Lock) to getRight(lid)

receives (sid , b) from getRight(lid)

if b = ⊥ send ⊥to Ui and abort

updateStatus(lid , Lock)

sends (sid , lid , Lock) to Ui

GetStatus(sid , lid)

upon invocation by Ui

return (sid , lid , getStatus(lid)) to Ui

Setup(sid , U0, . . . , Un)

upon invocation by Ui

if ∀i ∈ [0, n− 1] : (Ui, Ui+1) /∈ U then abort

∀i ∈ [0, n− 1] : lidi ← {0, 1}λ

insert (lid0, U0, U1, init, lid1), (lidn−1, Un−1, Un, init,⊥)
into L
sendan (sid ,⊥, lid0,⊥, U1, init) to U0

sendan (sid , lidn−1,⊥, Un−1,⊥, init) to Un

∀i ∈ [1, n− 1] : insert (lidi, Ui, Ui+1, init, lidi+1) into L
sendan (sid , lidi−1, lidi, Ui−1, Ui+1, init) to Ui

Release(sid , lid)

upon invocation by Ui

if getRight(lid) 6= Ui or getStatus(lid) 6= Lock or

getStatus(getNextLock(lid)) 6= Rel

and getNextLock(lid) 6= ⊥ then abort

updateStatus(lid ,Rel)

sends(sid , lid ,Rel) to getLeft(lid)

Figure 6: Ideal functionality FL for cryptographic locks (AMHL) [46]

(c) Alice and Bob negotiate the transaction StkAB(x′k, addrB,pay , addrA,steal , addrA,aid)
where x′k = xk−xk−1, Bob generates a VTS signature σB,pay and using Commit generates
a commitment Zk of σB,pay for time hardness tk and a proof πk. Bob sends the VTS
commitment Zk and the proof π.

(d) If the payment is successful, Alice and Bob go for the k + 1-th payment.

2. If Bob wishes to close the payment channel, Bob posts the last payment transaction
P`AB(lid , x`, addrA,pay , addrB,pay , addrA,steal) where `-th payment is the last payment.

3. Alice uses ForceOp on Z` associated with the St`AB(x′`, addrB,pay , addrA,steal , addrA,aid) at
time t` to retrieve σB,pay . If the transaction P`AB(lid , x`, addrA,pay , addrB,pay , addrA,steal)
is in the chain and the coins from address addrB,pay have not been spent already, Alice
generates signature σA,aid on St`AB(x′`, addrB,pay , addrA,steal , addrA,aid) and broadcasts it to
the network along with Bob’s signature σB,pay that was retrieved.

The transactions are described in Figure 7. The constraint Const is a script that helps
prevent race conditions between Alice and Bob. More specifically, without this constraint, Bob
could publish the payment transaction P`AB along with a transaction spending from B0 even
after the time t` has expired. Even if Alice swiftly broadcasts the steal transaction St`AB, there
is no way to know if this transaction or Bob’s transactions make it into the final longest chain.
The constraint Const(B0, A2) is designed to avoid this race condition by forcing Bob to wait
for time δ after posting the payment transaction P`AB. During this time interval Alice can post
her steal transaction to reclaim the coins. This prevents Bob from getting paid after a payment
has expired. Note that δ is time that is not a system parameter, rather a parameter agreed
between Alice and bob only. This relative time requirement from the chain is enforceable using
checkSequenceVerify script that is available in Bitcoin.

18

PAB(lid , x, A0, B0, A2)

if getStatus(lid) = Rel

Send x coins from AB to B0 with constraint Const(B0, A2)

Send the rest from AB to A0

Const(B0, A2) is defined as follows:

if time δ has passed since B0 received coins then

spend from B0 with a valid signature

else

spend from B0 with valid signatures for A2 and B0

StAB(x,B0, A1, A2)

if valid signature for B0 and A2

Transfer x coins from B0 to A1

Figure 7: Payment and Steal transactions used in realizing FPCN with VTS. Ai, Bi represent
addresses of user A and B respectively.

Our Protocol We now give the detailed protocol that uses VTS to remove information about
payment expiry time from going public and on-chain. Towards this, we describe the routines for
the sender Algorithm 1, receiver Algorithm 2 and an intermediate user Algorithm 3 involved in
a multi-hop payment. Our routines make use of the ideal functionality FL Figure 6 in a black
box manner and therefore can be instantiated with any multi-hop lock mechanism that securely
realizes FL. In this detailed version we extend the two party payment case explained above to
a payment between users only connected via multiple hops of payment channels.

Theorem 7. Let (Commit,Vrfy,Open,ForceOp) be a VTS with privacy and soundness for
the signature scheme (KGen, Sign,Vf) that is unforgeable. Then the protocol Γ with access to
(FL,FB,Fanon) securely realizes the functionality FPCN as described in Figure 17.

The proof of the theorem can be found in Appendix F.

5.1.1 Payment Channels Without Time On Blockchain

Contrary to Payment Channel Networks, in this section we deal with payment channels (there
are no hops) where Alice shares a channel with Bob and the payment is only between Alice and
Bob. Notice that in the protocol for VTS based PCN we needed the steal transaction to be
posted after a relative time δ has passed after posting the payment transaction. For systems
that do not offer such time based script functionalities we propose a simpler version of our
previous protocol that only holds for payment channels.

In an uni-directional case, the high level idea is for Bob to generate a verifiable timed
commitment (VTC) (Appendix E) to his signing key of the payment transaction PAB with
Alice for time T0, instead of creating a VTS for his signature on the steal transaction. The
verifiability of the timed commitments for having the valid signing key embedded, proceeds the
same way as we described for the verifiability of timed signatures in Appendices C.1 to C.3.
Except that, instead of having time-lock puzzles of shares of signatures, the time-lock puzzles
embed shares of the signing key. Unlike the three protocols we had for BLS, Schnorr and

19

Algorithm 1: Sender routine in a PCN Section 5.1

input : (U0, . . . , Un+1, µ, crs)

1 µ1 := µ+ Σni=1fee(Ui);
2 if µ1 ≤ cap(U0, U1) then
3 query FL on Setup(U0, . . . , Un);
4 FL returns (⊥, lid0,⊥, U1, init);
5 cap(U0, U1) := cap(U0, U1)− µ1;
6 T0 := tnow + ∆ · n;
7 for i = 1, . . . , n do

8 µi := µ1 − Σi−1j=1fee(Uj);

9 Ti := Ti−1 −∆;
10 send ((Ui−1, Ui+1, µi+1,Ti−1,Ti), fwd) to Ui

11 send (Un, µn+1,Tn) to Un+1;
12 query FL on Lock(lid0);
13 if FL returns (lid0, Lock) then
14 receive pk1,pay from U1;

15 generate (pk0,pay , sk0,pay), (pk0,steal , sk0,steal), (pk0,aid , sk0,aid)← KGen(1λ);

16 send (pk0,steal , pk0,aid) to U1;

17 set addr0,pay := addr(pk0,pay), addr1,pay := addr(pk1,pay);

18 send PU0,U1
(lid0, µ1, addr0,pay , addr1,pay , pk0,aid) to U1;

19 receive (C2, C, π) from U1;
20 parse C2 as StU0,U1

(µ1, addr1,pay , addr0,steal , pk0,aid);

21 if Vrfy(pk1,pay , C2, C, π) 6= 1 then abort;

22 else
23 σ1,pay ← ForceOp(C);
24 σ0,aid ← Sign(sk0,aid , C2);
25 send (C2, σ1,pay , σ0,aid) to FB

26 else abort ;

Algorithm 2: Receiver routine in a PCN Section 5.1

input : (Un, µ
′,Tn, µ, crs)

1 FL returns (lidn,⊥, Un,⊥, init);

2 generate (pkn+1,pay , skn+1,pay)← KGen(1λ);

3 send (pkn+1,pay , pay) to Un;

4 receive (pkn,steal , pkn,aid) from Un;

5 receive PUn,Un+1
(lidn, µn+1, addrn,pay , addrn+1,pay , pkn,aid) from Un;

6 if (Tn > tnow + ∆) ∧ (µ′ = µn+1 = µ) then
7 set addrn,steal := addr(pkn,steal), addrn+1,pay := addr(pkn+1,pay);

8 generate C2 := StUn,Un+1
(µ, addrn+1,pay , addrn,steal , pkn,aid);

9 generate σ ← Sign(skn+1,pay , C2; rsig) using randomness rsig ← {0, 1}λ if the signing
algorithm is randomized;

10 generate random r ← {0, 1}λ;
11 (C, π)← Commit(σ,Tn; r);
12 send (C2, C, π) to Un;
13 if getStatus(lid) = Lock then
14 query FL on Release(lidn);
15 send ok to Un

16 else send abort to Un;

17 else send abort to Un;

20

Algorithm 3: Intermediate user routine in a PCN Section 5.1

input : (m, decision, crs)

1 if decision = fwd then
2 parse m as (Ui−1, Ui+1, µi+1,Ti−1,Ti);

3 generate (pk i,pay , sk i,pay)← KGen(1λ);

4 send (pk i,pay , pay) to Ui−1;

5 receive (pk i−1,steal , pk i−1,aid) from Ui−1;

6 receive PUi−1,Ui
(lid i−1, µi, addr i−1,pay , addr i,pay , pk i−1,aid) from Ui−1;

7 if (Ti−1 = Ti + ∆) ∧ (µi = µi+1 + fee(Ui)) then
8 set addr i−1,steal := addr(pk i−1,steal);

9 C2 := StUi−1,Ui
(µi, addr i,pay , addr i−1,steal , pk i−1,aid);

10 generate σ ← Sign(sk i,pay , C2; rsig) using randomness rsig ← {0, 1}λ if the signing
algorithm is randomized;

11 generate random r ← {0, 1}λ;
12 (C, π)← Commit(σ,Ti−1; r);
13 send (C2, C, π) to Ui−1;

14 FL returns (lid i−1, lid i, Ui−1, Ui+1, init);
15 if (µi+1 ≤ cap(Ui, Ui+1)) ∧ (Ti−1 = Ti −∆) ∧ getStatus(lid i−1) = Lock then
16 cap(Ui, Ui+1) := cap(Ui, Ui+1)− µi+1;
17 query FL on lock(lid i);
18 if FL returns (lid i, Lock) then receive pk i+1,pay from Ui+1;

19 generate (pk i,pay , sk i,pay), (pk i,steal , sk i,steal), (pk i,aid , sk i,aid)← KGen(1λ);

20 send (pk i,steal , pk i,aid) to Ui+1;

21 set addr i,pay := addr(pk i,pay), addr i+1,pay := addr(pk i+1,pay);

22 send PUi,Ui+1
(lid i, µi+1, addr i,pay , addr i+1,pay , pk i,aid) to Ui+1;

23 receive (C ′2, C
′, π′) from Ui+1;

24 parse C ′2 as StUi,Ui+1
(µi+1, addr i+1,pay , addr i,steal , pk i,aid);

25 if Vrfy(C ′2, pk i+1,pay , C
′, π′) 6= 1 then abort;

26 else
27 σi+1,pay ← ForceOp(C ′);
28 σi,aid ← Sign(sk i,aid , C

′
2);

29 send (C ′2, σi+1,pay , σi,aid) to FB

30 ;
31 else send ⊥ to Ui−1;

32 else send ⊥ to Ui−1;

33 else if decision = ⊥ then
34 cap(Ui, Ui+1) := cap(Ui, Ui+1) + µi+1;
35 send ⊥ to Ui−1

36 else if decision = ok ∧ getStatus(lid i) = Rel then
37 query FL on Release(lid i−1);
38 send ok to Ui−1

39 else send ⊥ to Ui−1;

21

ECDSA, proving the timed commitment of a valid signing key is generic to any signature
scheme where the signing key is the discrete log of the public key. The timed commitment once
solved lets the sender learn the signing key of the receiver. This commitment once solved, lets
Alice learn the signing key of Bob, which she can use along with her own signing key to spend
from AB. The transaction that Alice uses to spend from AB can be of her choice as she has
the necessary signing keys to spend from AB. This means, Bob has to close the channel with a
payment transaction well before T0 (accounting for the confirmation time of the transaction).
In Algorithm 4 we see a formal description of a bi-directional case. We can see that the users
exchange VTC of their respective signing keys which are required to generate signatures closing
the payment channel. The parties learn the signing keys after time T0, which lets them to
spend from addr∗. However, if both parties agree on some balances before time T0, they can
close the channel by posting a transaction spending from addr∗.

Algorithm 4: Routine for user Ui, i ∈ {0, 1} in opening a payment channel with
VTC Section 5.1.1

input : (xi, addr i,T0, crs)

1 generate (pk i,fund , sk i,fund)← KGen(1λ);

2 generate random r ← {0, 1}λ (Ci, πi)← Commit(sk i,fund ,T0; r);
3 send (pk i,fund , addr i, xi) to user Ui−1;

4 receive (pk i−1,fund , addr i−1, xi−1) from user Ui−1;

5 jointly generate transaction tx∗ sending xi and xi−1 coins from addr i and addr i−1 respectively,
to multisig address addr∗ that represents both pk i,fund and pk i−1,fund ;

6 send (Ci, πi) to user Ui;
7 receive (Ci−1, πi−1);
8 if Vrfy(pk i−1,fund , Ci−1, πi−1) = 1 then
9 generate σi ← Sign(sk i, tx

∗);
10 send σi to user Ui−1;
11 receive σi−1 from user Ui−1;
12 send (tx∗, σi, σi−1) to FB

13 else
14 abort

Security The privacy of VTC ensures that user U0 cannot learn the signing key sk1,fund

before time T0 unless U1 reveals it. The same holds for user U1 who cannot learn the signing
key sk0,fund before time T0. Therefore, to close the channel, either parties can use a payment
transaction before time T0. Either users after learning the signing key after time T0 can try
to sign a new transaction and double spend with a different closing transaction. But this can
be prevented if the original closing transaction was posted on the chain at least k blocks deep.
Here k denotes the number of blocks required to be mined for a transaction to be confirmed
on chain, which in Bitcoin’s case is equal to 6. Soundness of VTS ensures that either users will
learn the correct signing key after time T0 and close the channel with its choice of transaction
if the channel is not closed already.

Remark: The reason why we cannot achieve a network of payment channels (PCN) is
because, any user i in the payment path can stay idle for time Ti−1 and force user i − 1 to
learn his signing key and post a transaction PUi−1,Ui

that closes the channel Ui−1Ui. User i− 1
is forced to do the same which lets user i− 2 solve its time-lock puzzle by time Ti−2 and post
a transaction PUi−2,Ui−1

that closes the channel Ui−2Ui−1. This continues through the path
closing all the channels in the path till the sender’s channel with U1. A malicious user could
force the closing of channels for all users behind him in the payment path. And this happens

22

whenever the malicious player forces a payment failure. The strategy is an attack as it can force
honest players in the path to close their channels and spend coins in the form of transaction
fees.

Lightning Network Scripts In Figure 8, we give the bitcoin script form of the contract. We
note that the original LN transaction costs 663 WU.

Input: Output of the funding transaction
Output - I (with x coins): P2WSH
OP IF

Can be spent using 〈σpkB0
σpkA2

1〉
2 〈pkB0〉 〈pkA2〉 2 OP CHECKMULTISIG

OP ELSE
Can be spent using 〈σpkB0

0〉 after δ blocks
〈δ〉 OP CHECKSEQUENCEVERIFY
OP DROP 〈pkB0〉 OP CHECKSIG

OP ENDIF
Output - II (with c− x coins): P2WSH
2 〈pkB0〉 〈pkA2〉 2 OP CHECKMULTISIG

Figure 8: Bitcoin Script implementing PAB(lid, x,A0, B0, A2). This is the script used for the
kth payment.

5.2 Multisig Without Time On Chain

A set of n users can come together to sign a transaction and redeem the coins. In Bitcoin
this is done with t-out of-n multisig scripts, where the transaction contains n public keys and
t signatures. This redeeming script lets any t users in the n user set to spend the coins. The
security guarantee is of unforgeability where an adversary controlling less than t users cannot
generate a valid signature.

Denial of Spending Attack An adversary can mount a Denial of Spending (DoSp) attack
where neither the adversary nor the honest users can reach the threshold t. This case is possible
for instance when 51% of the users are controlled by the adversary and the threshold t = 52%.
The DoSp attack can be quite devastating if honest users have locked high amounts of coin in the
multisig address. One solution to this problem is to use a locktime for the multisig transaction
output to prevent an indefinite DoSp attack by the adversary. Such a locktime could give a
’default’ path way to spend the funds from the multisig address if the time has expired on chain
and the multisig address has not spent its coin yet. This time-lock functionality or feature is
available in the scripting languages of Bitcoin, Ethereum, etc.

The locktime script based solution has several drawbacks, namely: (1) it is not compatible
with chains that do not offer the time-lock functionality, like Zcash and Monero, (2) it is a form
of information leakage on to the chain which is a privacy concern and (3) it does not extend to
the goal of ’scriptlessness’ for transactions. While the former two points are clear, we elaborate
now on (3).

Threshold signatures [18] have been actively developed recently as an efficient replacement
to several applications of the multisig transaction output. The two main objectives behind
developing threshold signatures for cryptocurrencies are to have smaller transactions with just
one public key and one signature instead of n and t respectively, and to have the transaction be
indistinguishable from any other common transaction in the system. Though it may be possible
to replace the naive multisig implementation in Bitcoin with a threshold signature, it is not

23

F({Aj , vj}j∈[n], A∗, {pk j}j∈[n])

if valid signatures for {Aj}j∈[n]
Transfer {vj}j∈[n] from {Aj}j∈[n] to A∗ with constraint

Const(A∗, {pk j}j∈[n])

Const(A∗, {pk j}j∈[n]) is defined as follows:

if valid signatures for {pk j}j∈[n] then

spend coins from A∗

Rdmi(A∗, {Bj , vj}j∈[n])

Transfer {vj}j∈[n] from A∗ to {Bj}j∈[n] respectively

Figure 9: Fund and Redeem Transactions used in multisig applications. Ai, Bi, A
∗ represent

addresses at different stages of the protocol

clear how to get rid of the locktime script to simultaneously achieve indistinguishability of the
transaction from other transactions and prevent the DoSp attack.

Our solution The DoSp attack in multisig (or threshold) transaction output arises only if the
honest parties cannot reach the threshold by themselves. Our solution is based on VTS that
enables the honest parties to reach the threshold after a pre-determined amount of time. On a
high level, our solution makes use of (threshold variant of) the underlying signature scheme and
proceeds in the following way: n users when they setup a funding transaction, sending coins
to an (multisig) address, also agree to a default redeem transaction. The signatures for the
default redeeming transaction are locked in a VTS for time T0 by all users involved. Important
to note here is that this is done before posting the funding transaction on chain (Algorithm 5).
Afterward, the users iteratively agree on successive redeem transactions and generate a VTS
for each of those redeem transactions. In each of these iterations, the VTS is generated with
decreasing timing hardness, to ensure that a successful redeem transaction from the i-th iteration
is posted on chain before the redeem transaction signatures from i−1-th iteration are obtained.
If the adversary fails to broadcast a redeem transaction in the j-th iteration in an attempt to
perform a DoSp attack, the honest users can solve the VTS for the last agreed upon redeem
transaction (j−1-th iteration) and obtain a valid signature for the same. In the worst case, the
last agreed upon redeem transaction could be the default redeem transaction from the setup
phase (Algorithm 6). This way we get rid of the locktime script entirely. The funding and
redeem transactions are described in Figure 9. Our VTS based solution is applicable to any
scenario wherever there is a time-lock required of a multisig transaction, for instance in the fair
computation application we see in!Section 5.3

Security In the threshold variant, unforgeability means that the adversary controlling less than
t users cannot forge a signature on a fresh message. Unforgeability of our VTS based solution
described above against an (threshold) adversary follows directly from the unforgeability of the
underlying (threshold) signature scheme. To see why, a PPT adversary can solve the VTS of
honest users and obtain their shares of signatures after time T0. We are now back to the case of
the regular multi-user signing protocol for the underlying signature scheme which is unforgeable.
Therefore we argue that our VTS based solution is unforgeable. Note that the unforgeability
we seek is that of weak unforgeability. This is because the adversary can only only harm the

24

Algorithm 5: User Ui’s routine in funding and setup phase Section 5.2

input : (U1, addr ′1, v1), . . . , (Un, addr ′n, vn)

1 User Ui generates (pk i,fund , sk i,fund) and (pk i,rdm , sk i,rdm) by running KGen(1λ);

2 send other users pk i,fund , pk i,rdm ;

3 receive pk j,fund , pk j,rdm from all other users Uj ;

4 jointly generate F0 := F({addr ′j , vj}j∈[n], addr∗, {pk j,fund}j∈[n]) ;

5 jointly generate R0 := Rdm0(addr∗, {addr j,rdm , v
′
j}j∈[n]) ;

6 generate σi ← Sign(sk i,fund , R0; rsig) using randomness rsig ← {0, 1}λ if the signing algorithm is
randomized;

7 generate random r ← {0, 1}λ;
8 (C, π)← Commit(σi,T0; r);
9 send (R0, C, π) to all other users;

10 receive (R0,j , Cj , πj) from user Uj for j ∈ [n]\i;
11 for j ∈ [n]\i do
12 if R0,j 6= R0 ∨ Vf(Cj , πj) 6= 1 then abort;

13 generate σ′i ← Sign(sk ′i, F0; r′sig) using randomness r′sig ← {0, 1}λ if the signing algorithm is

randomized;
14 send (F0, σ

′
i) to all other users ;

15 receive (F0, σ
′
j) from user Uj for j ∈ [n]\i;

16 send (F0, σ
′
1, . . . , σ

′
n) to FB;

17 for j ∈ [n]\i do
18 σj ← ForceOp(Cj) if they have not been redeemed already;

19 send (R0, σ1, . . . , σn) to FB and redeem the funds ;

Algorithm 6: User Ui’s routine in `-th redeem phase Section 5.2

input : T`−1, addr∗, (U1, pk1,fund , addr1,rdm , v1), . . . , (Un, pkn,fund , addrn,rdm , vn)

1 jointly generate R` := Rdm`(addr∗, {addr j,rdm , v
′
j}j∈[n]) ;

2 generate σi ← Sign(sk i,fund , R`; rsig) using randomness rsig ← {0, 1}λ if the signing algorithm is
randomized;

3 generate random r ← {0, 1}λ;
4 (C, π)← Commit(σi,T`; r) where T` < T`−1;
5 send (R`, C, π) to all other users;
6 receive (R`,j , Cj , πj) from user Uj for j ∈ [n]\i;
7 for j ∈ [n]\i do
8 if R`,j 6= R` ∨ Vrfy(pk j,fund , R`, Cj , πj) 6= 1 then abort;

9 else
10 σj ← ForceOp(Cj) if the funds have not been redeemed already

11 send (R`, σ1, . . . , σn) to FB and redeem the funds;

25

FML with session identifier sid , running with users U1, . . . , Un and a parameter 1λ, proceeds as
follows:

• Lock phase: Wait to receive (lock, sid , ssid , i,Di = (x, φ1, . . . , φn,T0), coins(x)) from
each Ui and record (locked, sid , ssid , i,Di). Then if ∀i, j : Di = Dj send message
(locked, sid , ssid) to all parties and proceed to the Redeem phase. Otherwise, for all
i, if the message (locked, sid , ssid , i,Di) was recorded then delete it and send message
(abort, sid , ssid , i, coins(x)) to Ui, and terminate.

• Redeem phase: In round T0: upon receiving a message (redeem, sid , ssid , i, wi) from Ui, if
φi(wi) = 1 then delete (locked, sid , ssid , i,Di), send (redeem, sid , ssid , coins(x)) to Ui and
(redeem, sid , ssid , i, wi) to all users.

• Payout phase: In round T0+1: for all i ∈ [n]: if (locked, sid , ssid , i,Di) was recorded but not
yet deleted, then delete it and send the message (payout, sid , ssid , i, j, coins(x

n−1)) to every
user Uj 6= Ui.

Figure 10: Ideal functionality FML for fair computation from [36].

honest users when it comes with up with a fresh redeem transaction for which honest parties
did not broadcast their VTS.

5.3 Fair Computation Without Timing On Chain

In a line of research [10,36,37] techniques to design fair protocols based on the Bitcoin blockchain
were proposed. The notion we consider here is that of ideal transaction functionality FML

from [36] that achieves fair computation in MPC by using a public ledger. The functionality
is described in Figure 10. On a high level, the functionality proceeds with three phases. The
first phase is the locking phase (or the setup phase as above), where users deposit some coins
using transaction Lock[n] into multiple addresses but with a condition: to spend from these
addresses, one requires the signatures of all users or a user produces a witness for a condition
and his own signature. Additionally in this phase, users sign a (default) pay transaction for
each of the above addresses, that transfers coins from that address to the rest of the users, but
this transaction is valid only after some lock-time T0. The second phase is the redeem phase
where a user can redeem coins from one of the addresses in the Lock[n] transaction before time
T0 provided he knows the witness for the condition specified in that address. The final phase
is the payout phase, where if after time T0 any of the addresses in Lock[n] have not been spent,
any user can use the default pay transaction for that address to distribute the coins locked in
that address to every other user involved in the computation.

We realize the timeout feature of the public ledger using VTS and in this direction we give
a protocol based on VTS that realizes FML. This makes our protocol compatible with chains
that do not offer the time-lock functionality and is also promising for substitution of multisig
with threshold signatures as discussed in Section 5.2.

Intuition Similar to the multisig case we saw in the previous application, in the lock phase
each user locks x(n− 1) coins into an address addr i,fund which has a spending constraint Consti
associated with it. This is done using a single transaction Lock[n]. The constraint says that
either spend from addr i,fund if all users sign (signatures verifying for keys {pk i,`,pout}`∈[n]), else
if user Ui produces a witness wi such that φi(wi) = 1 and a valid signature of itself. But
before signing and posting this transaction, users generate dPOi transaction that spends from
addr i,fund of the locking transaction Lock[n]. Each user generates a VTS on all dPOi transactions

26

Lock[n]({Ai, p}i∈[n], {Bi, {pk i,`}`∈[n], φi}i∈[n])

if valid signatures for {Ai}i∈[n]
Transfer p coins to Bi with constraint

Consti(Bi, pk i,i{pk i,`}`∈[n], φi) for all i ∈ [n]

Consti({B, pk , {pk `}`∈[n], φ}) is defined as follows:

if valid w such that φ(w) = 1 and valid signature for pk then

can spend p coins from B

elseif valid signatures for all pk `, ` ∈ [n] then

can spend p coins from B

dPO(B, {pkk}k∈[n], {x,Cj}j∈[n])

if valid signatures for all pkk, k ∈ [n] then

transfer from B, x coins to each of Cj where j ∈ [n]

Figure 11: Lock and Payout transactions used in realizing FML. Here Ai, Bi, Ci represent
addresses for different stages of the protocol.

for i ∈ [n]. Each of the VTS has a timing hardness of T0. Once the default pay transactions
and their VTS’s are verified successfully, each user signs the lock transaction Lock[n] and one of
them posts it on the blockchain. The redeem phase proceeds as usual, where if a user Ui posts
the witness wi and signs, can claim funds from addr i,fund . The payout phase proceeds after T0

where if any addr i if still unclaimed in Lock[n] can be claimed using dPOi. This is because, after
time T0, all the n VTS for dPOi would have been successfully retrieved. Refer to Figure 11
for the formalization of the Lock[n] and dPO transactions. We formalize the above discussed
intuition in Algorithms 7 and 8 respectively. The protocol follows the Bitcoin specific protocol
given in [36] with the exception that instead of relying on the locktime script from Bitcoin, we
employ VTS to implement the payout phase.

Security The privacy of VTS ensures that the adversary cannot learn the signatures for dPOi
before time T0 for an honest user Ui. Therefore no dPO transaction can be posted on chain
before time T0. This realizes the feature offered by the script locktime in Bitcoin where the
adversary cannot post dPOi before T0 as it becomes valid only after that time. The soundness
of VTS ensures the correctness of the protocol. Given the soundness, no adversary A can
generate a VTS commitment and proof (C, π) that does not embed a valid signature on its
payout transaction dPOA. This ensures correct completion of the lock phase. We refer the
reader to [36] for a detailed analysis for the functionality and its instantiation with Bitcoin
achieving fairness in MPC.

5.3.1 Claim and Refund Functionality

Similar to FML, the functionality FCR referred to as claim and refund as described in Figure 12
was formalized in [10, 36]. On a high level, the sender locks some amount of coins as a deposit
for a certain amount of time. The deposit also dictates the necessary conditions to claim these
coins. If the receiver claims the deposit coins within the specific time with the valid witness, the
state is updated as the deposit to have been claimed. If the receiver fails to claim the deposit

27

Algorithm 7: Routine for user Ui in lock phase and the payout phase Section 5.3

input : (U1, . . . , Un, φi, addr ′i, p = x(n− 1),T0, crs)

1 generate (pk i,`,pout , sk i,`,pout) by running KGen(1λ) for ` ∈ [n];

2 send pk i,`,pout to all users for ` ∈ [n];

3 receive pk j,`,pout from all other users Uj ;

4 jointly generate L := Lock[n]({addr ′j , p}j∈[n], {addr j,fund , {addr j,`,pout}`∈[n], φj}j∈[n]);
5 generate Pi := dPOi(addr i,fund , {pkk,i,pout}k∈[n], {x, poutj}j∈[n]\i) for all ` ∈ [n];

6 send Pi to all users ;
7 receive Pj := dPOj(addr j,fund , {pkk,j,pout}k∈[n], {x, addrk,pout}k∈[n]\j) from all other users Uj ;

8 for ` ∈ [n] do
9 generate σi,` ← Sign(sk i,`,pout , P`; r`,sig) using randomness r`,sig ← {0, 1}λ if the signing

algorithm is randomized;

10 generate random r ← {0, 1}λ;
11 (Ci,`, πi,`)← Commit(σi,`,T0; r);
12 send (P`, C, π) to all users;
13 receive (P`, Cj,`, πj,`) from user Uj for all j ∈ [n]\i;
14 if ∃j ∈ [n]\i,Vrfy(Cj,`, πj,`) 6= 1 then abort ;

15 generate σi ← Sign(sk ′i, L);
16 send (L, σi) to all other users;
17 receive (L, σj) from all other users Uj ;
18 send (L, {σi}i∈[n]) to FB;
19 for ` ∈ [n] do
20 for j ∈ [n]\i do
21 σj,` ← ForceOp(Cj,`);

22 send (P`, {σj,`}j∈[n]) to FB

Algorithm 8: Routine for user Ui in the redeem phase Section 5.3

input : (L,wi, crs)

1 parse L := Lock[n]({addr ′j , p}j∈[n], {addr j,fund , {addr j,`,pout}`∈[n], φj}j∈[n]);
2 generate (pk ′, sk ′)← KGen(1λ);
3 generate transaction R := tx (addr i,fund , addr ′, p) which transfers p coins from addr i,fund to

addr ′;
4 generate σi,i,pout ← Sign(sk i,i,pout , R);
5 send (R,wi, σi,i,pout) to FB;

28

FCR with session identifier sid , running with users Us and Ur, a parameter λ and adversary S
proceeds as follows:

• Deposit phase: Upon receiving the tuple (deposit, sid , ssid , s, r, φs,r, τ, coins(x)) from Us,
record the message (deposit, sid , ssid , s, r, φs,r, τ, x) and send it to all users. Ignore any
future deposit messages with the same ssid from Us to Ur.

• Claim phase: In round τ , upon receiving the tuple (claim, sid , ssid , s, r, φs,r, τ, x, w)
from Ur, ensure that (1) a tuple (deposit, sid , ssid , s, r, φs,r, τ, x) was recorded, and
(2) if φs,r(w) = 1. If both checks pass, send (claim, sid , ssid , s, r, φs,r, τ, x, w)
to all users, send (claim, sid , ssid , s, r, φs,r, τ, coins(x)) to Ur, and delete the record
(deposit, sid , ssid , s, r, φs,r, τ, x).

• Refund phase: In round τ + 1, if the record (deposit, sid , ssid , s, r, φs,r, τ, x) was not
deleted, then send (refund, sid , ssid , s, r, φs,r, τ, coins(x)) to Us, and delete the record
(deposit, sid , ssid , s, r, φs,r, τ, x).

Figure 12: Ideal functionality for claim and refund FCR from [36]

within the specified time, the original depositor gets back his coin referred to as the refund
phase. There are wide range of applications that can achieve fair computation among the users
with protocols that realize the claim and refund functionality.

It is easy to see that the time-lock functionality of the underlying chain plays a crucial role in
preventing DoS and DoSp attacks on the sender by a malicious receiver. As mentioned earlier,
both from a privacy and compatibility point of view, heavily relying on the time-lock script
functionality of the underlying blockchain system is not desirable.

Our Solution. We give two solutions that achieve the time-lock feature of the claim and
refund functionality. In the first solution we make use of VTS, and in the second solution we
use timed commitments to signing keys instead of signatures.

1. Verifiable Timed Commitments in FCR: The sender in this case posts a transaction
tx deposit on chain that has an output script of the form: spend if a valid witness to
some condition or, if both the sender and receiver sign. The receiver generates a timed
commitment (using time-lock puzzles) with timing hardness T of her signing key corre-
sponding to her public key specified in tx deposit. The timed commitment once solved lets
the sender learn the signing key of the receiver. The sender can then post a transaction
tx refund along with her signature and receiver’s signature (generated by the sender) in the
refund phase. Notice that from the security of the timed commitments (time-lock puzzles)
we know that this transaction becomes valid only after time T (provided the sender and
the receiver do not collude) as the sender obtains the signing key of the receiver only
after this time and generate receiver’s signature. The claim phase works with the receiver
generating a transaction tx claim containing the valid witness for the condition specified in
tx deposit.

2. VTS in FCR: Notice that in the above solution the sender learns the signing key of the
receiver. Our second solution that is based on VTS. In this case, sender during the deposit
phase posts a transaction tx deposit with a similar script as in the above case. But now
the receiver gives the sender a VTS with timing hardness T for a transaction tx refund

that spends the above output script. The sender can force open the VTS to obtain the
receiver’s signature on tx refund and add her own signature before posting the transaction.
Notice that from the security of VTS we know that this transaction becomes valid only
after time T as the sender obtains the signature of the receiver only after that time. The

29

Dep({S, p}, {RS, pks, pk r, φ})

if valid signature for S

Transfer p coins to RS with constraint

Const(RS, pks, pkr, φ)

Const(RS, pks, pk r, φ) is defined as follows:

if valid w such that φ(w) = 1 and valid signature for pkr then

can spend p coins from RS

elseif valid signatures for all pks, pkr then

can spend p coins from RS

Rfd(RS, p, pk r, pks, S
∗)

if valid signatures for all pks, pkr then

transfer from RS, p coins to S∗

Figure 13: Deposit and Refund transactions used for realizing FCR. Here S, S∗, R are addresses
of users and RS is a joint address the sender and the receiver

claim phase works exactly as in the above case.

We present the VTS based solution and it is easy to see how the other solution works.
The algorithms are formalized in Algorithms 9 and 10 that make use of transactions described
in Figure 13.

Algorithm 9: Routine for user Us in deposit phase and the refund phase Section 5.3.1

input : (Ur, φ, addrs, p,T, crs)

1 generate (pk ′s, sk ′s), (pk∗, sk∗)← KGen(1λ) ;
2 send (pk ′s, addr∗) to user Ur;
3 receive pk ′r from user Ur;
4 generate D := Dep({addrs, p}, {addrrs, pk ′s, pk ′r, φ});
5 send D to user Ur;
6 receive (R,C, π) from user Ur;
7 parse R as Rfd(addrrs, p, pk ′r, pk ′s, addr∗);
8 if Vrfy(pk ′r, R, C, π) 6= 1 then abort ;
9 generate σs ← Sign(sks, D);

10 send σs to user Ur;
11 σ′r ← ForceOp(C);
12 generate σ′s ← Sign(sk ′s, R);
13 send (R, σ′s, σ

′
r) to FB;

Security A corrupt user Us could learn the witness w and try to double spend the coins from
addr rs to itself. However, this means that Us has to rewind back the blockchain to the block
just before Ur posted the witness on the chain. However, it will have to forge the signature σ′r
which is prevented by the unforgeability of the signature scheme. It could however rewind back
to the point where the Dep transaction was posted on chain and modify the address addr rs to
addrs′ that is fully controlled by Us. But this requires the user Us to rewind the blockchain
which is highly expensive. Moreover, if user Ur waits for k blocks (where k is the number

30

Algorithm 10: Routine for user Ur in deposit and the claim phase Section 5.3.1

input : (Us, w, crs)

1 generate (pk ′r, sk ′r)(pk ′′r , sk ′′r)← KGen(1λ);
2 receive (pk ′s, addr∗) from user Us;
3 send pk ′r to user Us;
4 receive D := Dep({addrs, p}, {addrrs, pk ′s, pk ′r, φ}) from user Us;
5 generate R := Rfd(addrrs, p, pk ′r, pk ′s, addr∗);

6 generate randomness r′, rsig ← {0, 1}λ;
7 generate σ′r ← Sign(sk ′r, R; rsig) if the signature scheme is randomized;
8 (C, π)← Commit(σ′r,T; r′);
9 send (R,C, π) to user Ur;

10 receive σs from user Us;
11 send (D,σs) to FB;
12 generate transaction Clm that spends from addrrs to addr ′′r ;
13 generate σ′′r ← Sign(sk ′r,Clm);
14 send (Clm, w, σ′r) to FB;

blocks required for a transaction to be confirmed), before posting the witness w, this means
the adversary Us had to rewind more than k blocks. From the probabilistic guarantees for the
underlying blockchain we know that this happens with negligible probability.

6 Performance Evaluation

In this section we present empirical results for VTS. In this regard, we first survey AWS machines
and benchmark squaring operations on various machines. Then we implement and evaluate
key components: the standard signature schemes, BLS, Schnorr and ECDSA, and Linearly
Homomorphic Time-Lock Puzzles on the weakest AWS machine to justify practicality of the
construction. Then we estimate the cost of the VTS operations: Commit and Vrfy. As part of
these operations, we also implement the range proofs Section 4.5. Our implementation is in C
programming language and does not use any optimizations (logical and others) or concurrency.
Our numbers are proof-of-concept and can be significantly improved in production.

We estimate the HTLCs that are posted on the Bitcoin blockchain as a payment closing step
in a PCN heuristically. We estimate the number of outputs present in the closing transaction
to get a real-world estimate on the number of times the worst-case, i.e. a channel closes with
pending payments.

We also measure the size of transactions (in bytes) for our VTS based solution for the current
implementation in Lightning Network (the PCN in Bitcoin). Our VTS solution does not leak
any information about the time-lock on-chain with a negligible overhead in terms of on-chain
space (steal transaction in the worst case).

6.1 Setup and Preliminaries

System Specifications. We use the following versions of the software and libraries for our
experiments: Bitcoin-client bitcoin-cli, Bitcoin daemon bitcoind (v0.18.0.0-g2472733), Bitcoin
blockchain parser blocksci (master branch with commit hash 49e97ad) and Lightning client
lnd (0.5.1-beta commit=v0.5.1-beta-579-gb7387a) to analyze the Bitcoin blockchain and the
Lightning network. We employ OpenSSL Library openssl (1.1.1.d-2), GNU Multi-Precision
library gmp (6.1.2-3) and Pairing Based Cryptography Library pbc (0.5.14-1) to estimate the
cryptographic computations. The machine used for data capture has the following hardware

31

configuration: CPU (Intel(R) Xeon(R) Silver 4116 CPU @ 2.10GHz with 20 cores) and
RAM (128GB).

Table 1: AWS Machine Types and Squaring Performance

Machine RAM vCPU Disk Special Features Cost($/Hr)
|N | and Squarings

1024 2048

t2.xlarge 16.0 4 EBS - 0.1856 5.853× 109 1.881× 109

t3a.large 8.0 2 EBS - 0.0752 5.685× 109 1.806× 109

c5n.large 5.25 2 EBS Compute Optimized 0.108 8.069× 109 2.600× 109

d2.xlarge 30.5 4 HDD Storage Optimized 0.69 5.025× 109 1.525× 109

m5ad.large 8.0 2 SSD 1× 75 NVMe 0.103 6.600× 109 2.097× 109

r5ad.large 16.0 2 SSD
1× 75 NVMe and

0.131 6.626× 109 2.108× 109

Memory Optimized

Parameters. For all the experiments, unless otherwise specified, we use RSA 1024-bit mod-
ulus, random messages m with size |m| = 100 bits and threshold t = dn/2e.
Squarings in AWS. Given that practical constructions of time-lock puzzles are based on
sequential squaring in an RSA group [53], we use different AWS machines to perform squarings
to capture the role played by hardware. We use 6 different types of AWS machines whose
configurations are detailed in Table 1.

First we ran the squaring experiment on the various AWS machines (presented in Table 1).
As expected, we observe that the RAM and number of cores do not help in improving the
number of squarings performed. However, we note that AWS’ compute optimized machines
perform better than the regular machines. We also observe that the SSD equipped machines
seem to perform more squarings than the EBS counterparts.

For the subsequent experiments, we implement using t3a.large, the weakest (and the cheap-
est) of the AWS machines in Table 1 to show the efficiency and practicality of our constructions.

Benchmarks. Since, we use BLS, ECDSA and Schnorr, we first measure the cost of basic
operations for these signature schemes. For VT-BLS, we use the Type A curves using PBC
(pairing based cryptography) library [44] for pairing implementation. For VT-ECDSA, we use
the implementation and the secp256k1 curve present in OpenSSL [24]. For VT-Schnorr, we use
the proposed BIP schnorr standard [57] to instantiate Schnorr in secp256k1 elliptic curves. A
summary of the cost of key generation, signing and verification for these signature schemes is
presented in Table 2.

Table 2: A summary of costs for KGen, Sign and Vf

Operation Schnorr ECDSA BLS

Keygen 1.69 ms 1.70 ms 0.024 s

Sign 1.63 ms 1.67 ms 0.023 s

Verify 1.55 ms 1.57 ms 0.047 s

32

0 25 50 75 100 125 150 175 200

Number of puzzles merged

0

2

4

6

8

T
im

e
ta

ke
n

to
M

er
ge

P
u

zz
le

s
(i

n
µ

s)

Figure 14: The time to batch puzzles vs the number of puzzles batched.

6.2 Performance Evaluation

Linearly Homomorphic Time-Lock Puzzles. We first implement a library for LHTLP
variant proposed in [47] and use the library to estimate the cost (time) of various crypto-
graphic operations needed to be performed in LHTLP.PSetup, LHTLP.PGen, LHTLP.PEval and
LHTLP.PSolve.

We ran each phase of LHTLP 10 times and present the average. We used an RSA modulus
of 1024 bits and T = 1.0× 106, on average:

• LHTLP.PSetup takes 5.521 s,
• LHTLP.PGen takes 9.93 ms,
• LHTLP.PSolve takes 0.692 s.
• Batching using LHTLP.PEval is very efficient (linear in number of puzzles merged) and

this is presented in Figure 14.

Verifiable Timed Signatures. We estimate the time required to perform Commit and Prove
and Verification algorithms for VT-BLS (Figure 2), VT-Schnorr (Figure 3) and VT-ECDSA
(Figure 4), and present them in Table 3. We observe that the curves used for BLS are not
optimized and therefore lead to much slower computations. All three implementations can be
significantly improved using concurrency and other efficient data structures. We also observe
that despite this, the operations are still practical for use in the real-world.

6.3 VTS and Lightning Network

In order to get an idea for the hiding time parameter T and understand how the Commit
transactions are employed in PCNs today, we study the Bitcoin PCN - the Lightning network.

Bitcoin uses elliptic curve secp256k1 for signature generation. There is a proposal to use
Schnorr signatures [57]. We study the graph statistics for the Lightning Network (LN) [52] and
analyze the number of outputs from the Bitcoin blockchain for our analysis. The number of
outputs indicate the number of times a channel is closed before completion of PCN payment.

33

Table 3: The cost (time) of commit and prove, and verification steps for Schnorr, ECDSA and
BLS for different values of n.

Operation
Parameter n (Soundness error)

30 (6.44× 10−9) 40 (7.25× 10−12)

VT-BLS
Commit 20.44 s 32.19 s

Verify 33.24 s 41.37 s

VT-ECDSA
Commit 7.77 s 10.41 s

Verify 7.53 s 9.94 s

VT-Schnorr
Commit 7.93 s 10.71 s

Verify 7.93 s 10.72 s

Table 4: Lightning Graph Data (as of November 23, 2019)

Parameter Value Unit

Nodes 4, 692 -

Channels 30, 665 -

Percentage Disabled 80.05 %

Avg. Channel Capacity 2, 673, 295.67 sat

Avg. Minimum HTLC Amount 1, 237.42 10−3 sat

Avg. Base Fee 1, 008.51 10−3 sat

Avg. Fee Rate 683, 536.66 10−6 sat

Avg. Time Lock Delta 85.53 blocks

Lightning Graph Statistics. We scanned their network using the describegraph command
of the lightning client. We consolidated the information into Table 4. We observe that 80.05%
of the payment channels are disabled, i.e do not allow the channel to be a part of a PCN for
a payment. We also observe that the time lock duration is 85.53 blocks which is equivalent to
14.25 hours giving an estimate to T.

Estimating Channel Closures. When a channel between Alice and Bob is closed, there are
two primary outputs. The first output is the to local output which settles the money to the
address going on-chain after a delay using P2WSH. This delay ensures that if Alice closes the
channel using a stale transaction, Bob can use a revocation key to penalize Alice by stealing the
money from the output. The second output to remote pays money (using P2WPKH) directly to
the other user in the channel. Other outputs can exist if Alice and Bob were a part of a payment
network, but one of them decides to close the channel. In this case, there are extra outputs
which contain HTLC -Claim or Refund Scripts or a new channel creation. Since, we cannot
know what these outputs until the witness is produced on chain, we conservatively estimate
them as HTLC-Claim or Refund outputs.

Therefore estimating the number of closure transactions on the blockchain whose outputs
are more than 2 gives an estimate of how likely the closure of a channel with an ongoing payment

34

is in the real-world.
From the main chain, we observe 116, 502 closing transactions by examining opened outputs

with one output matching a to local output. These are transactions that are used to close
the payment channel. Among them, 66.84 % (77, 867) of transactions contain more than one
P2WSH outputs. We present the number of P2WSH outputs in these closing transactions
in Table 5.

Table 5: A histogram of the number of outputs in a lightning closing transaction. There is one
standard output called the to local which pays self after a delay giving the remote user time to
penalize the party if a stale transaction is published. Any output more than 1, indicates that
the user was involved as a intermediate in a payment channel but decided to close the channel.

of P2WSH Outputs # of Closing Tx

1 (No HTLC output) 38, 635

2 (1 HTLC output) 47, 172

3− 10 20, 634

11− 100 9, 245

≥ 100 10

From Table 4, we observe that the average base-fee is 1 satoshi which equates to 0.000087
USD (as of today) and the average fee-rate is 683 satoshis which amounts to 0.06 USD. From
Table 1, we observe that a faster machine can perform a lot more (2×) squarings than the
cheaper machines. However, this is not beneficial for the attacker. Lighting network consists of
micro-transactions, whose cost to exploit outweigh the gain. For privacy-critical applications,
VTS provides an efficient alternative.

7 Conclusion And Future Work

We theoretically analyze and present secure constructions for Verifiable Timed Signatures com-
patible with standard signatures such as BLS, Schnorr and ECDSA. Our constructions are
efficient in terms of cost for verifying the timed commitments if they indeed encapsulate a valid
signature on a message and if it can be obtained after the given time T. Our constructions are
readily usable in several current day systems for achieving improved privacy and compatibility
across several settings. We present several cryptocurrency-related applications for VTS and a
variant of VTS where the signing key is committed instead of the signature. We experimentally
evaluate our approach to show that our constructions are practical. In terms of future work,
the next step is developing VTS-based solutions for other real world systems that can benefit
from the timed nature of the primitive. Our verifiability techniques leaves open the question
of whether we can improve the efficiency of the verifier and the size of the proof even further.
Developing efficient range proofs with smaller slack for HTLP is of independent interest.

References

[1] “bip32,” https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki.

[2] “Bitcoin wiki: Payment channels,” https://en.bitcoin.it/wiki/Payment channels.

35

https://github.com/bitcoin/bips/blob/master/bip-0032.mediawiki
https://en.bitcoin.it/wiki/Payment_channels

[3] “Bolt #3: Bitcoin transaction and script formats,” https://github.com/lightningnetwork/
lightning-rfc/blob/master/03-transactions.md#offered-htlc-outputs.

[4] “Self decrypting files,” https://www.gwern.net/Self-decrypting-files.

[5] B. Applebaum, Y. Ishai, and E. Kushilevitz, “How to garble arithmetic circuits,” in 52nd
FOCS, R. Ostrovsky, Ed. Palm Springs, CA, USA: IEEE Computer Society Press, Oct. 22–
25, 2011, pp. 120–129.

[6] V. K. Bagaria, J. Neu, and D. Tse, “Boomerang: Redundancy improves latency and
throughput in payment-channel networks,” in 24th International Conference on Financial
Cryptography and Data Security FC 2020, 2020, pp. 304–324.

[7] W. Banasik, S. Dziembowski, and D. Malinowski, “Efficient zero-knowledge contingent
payments in cryptocurrencies without scripts,” in ESORICS 2016, Part II, ser. LNCS, I. G.
Askoxylakis, S. Ioannidis, S. K. Katsikas, and C. A. Meadows, Eds., vol. 9879. Heraklion,
Greece: Springer, Heidelberg, Germany, Sep. 26–30, 2016, pp. 261–280.

[8] R. E. Bansarkhani and J. Sturm, “An efficient lattice-based multisignature scheme with
applications to bitcoins,” in CANS 16, ser. LNCS, S. Foresti and G. Persiano, Eds., vol.
10052. Milan, Italy: Springer, Heidelberg, Germany, Nov. 14–16, 2016, pp. 140–155.

[9] E. Ben-Sasson, A. Chiesa, C. Garman, M. Green, I. Miers, E. Tromer, and M. Virza,
“Zerocash: Decentralized anonymous payments from bitcoin,” in 2014 IEEE Symposium
on Security and Privacy. Berkeley, CA, USA: IEEE Computer Society Press, May 18–21,
2014, pp. 459–474.

[10] I. Bentov and R. Kumaresan, “How to use bitcoin to design fair protocols,” in
CRYPTO 2014, Part II, ser. LNCS, J. A. Garay and R. Gennaro, Eds., vol. 8617. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 17–21, 2014, pp. 421–439.

[11] N. Bitansky, S. Goldwasser, A. Jain, O. Paneth, V. Vaikuntanathan, and B. Waters, “Time-
lock puzzles from randomized encodings,” in ITCS 2016, M. Sudan, Ed. Cambridge, MA,
USA: ACM, Jan. 14–16, 2016, pp. 345–356.

[12] D. Boneh, M. Drijvers, and G. Neven, “Compact multi-signatures for smaller blockchains,”
in ASIACRYPT 2018, Part II, ser. LNCS, T. Peyrin and S. Galbraith, Eds., vol. 11273.
Brisbane, Queensland, Australia: Springer, Heidelberg, Germany, Dec. 2–6, 2018, pp. 435–
464.

[13] D. Boneh, C. Gentry, B. Lynn, and H. Shacham, “Aggregate and verifiably encrypted
signatures from bilinear maps,” in EUROCRYPT 2003, ser. LNCS, E. Biham, Ed., vol.
2656. Warsaw, Poland: Springer, Heidelberg, Germany, May 4–8, 2003, pp. 416–432.

[14] D. Boneh, B. Lynn, and H. Shacham, “Short signatures from the Weil pairing,” in ASI-
ACRYPT 2001, ser. LNCS, C. Boyd, Ed., vol. 2248. Gold Coast, Australia: Springer,
Heidelberg, Germany, Dec. 9–13, 2001, pp. 514–532.

[15] D. Boneh and M. Naor, “Timed commitments,” in CRYPTO 2000, ser. LNCS, M. Bellare,
Ed., vol. 1880. Santa Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 20–24,
2000, pp. 236–254.

36

https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md#offered-htlc-outputs
https://github.com/lightningnetwork/lightning-rfc/blob/master/03-transactions.md#offered-htlc-outputs
https://www.gwern.net/Self-decrypting-files

[16] I. Damg̊ard and M. Jurik, “A generalisation, a simplification and some applications of
Paillier’s probabilistic public-key system,” in PKC 2001, ser. LNCS, K. Kim, Ed., vol.
1992. Cheju Island, South Korea: Springer, Heidelberg, Germany, Feb. 13–15, 2001, pp.
119–136.

[17] A. De Santis, S. Micali, and G. Persiano, “Non-interactive zero-knowledge proof systems,”
in Conference on the Theory and Application of Cryptographic Techniques. Springer, 1987,
pp. 52–72.

[18] Y. Desmedt, “Society and group oriented cryptography: A new concept,” in CRYPTO’87,
ser. LNCS, C. Pomerance, Ed., vol. 293. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, Aug. 16–20, 1988, pp. 120–127.

[19] M. Drijvers, K. Edalatnejad, B. Ford, E. Kiltz, J. Loss, G. Neven, and I. Stepanovs, “On the
security of two-round multi-signatures,” in On the Security of Two-Round Multi-Signatures.
IEEE, 2019, p. 0.

[20] S. Dziembowski, L. Eckey, S. Faust, and D. Malinowski, “Perun: Virtual payment hubs over
cryptocurrencies,” in 2019 IEEE Symposium on Security and Privacy. IEEE Computer
Society Press, 2019, pp. 106–123.

[21] S. Dziembowski, S. Faust, and K. Hostáková, “General state channel networks,” in ACM
CCS 2018, D. Lie, M. Mannan, M. Backes, and X. Wang, Eds. Toronto, ON, Canada:
ACM Press, Oct. 15–19, 2018, pp. 949–966.

[22] L. Eckey, S. Faust, K. Hostáková, and S. Roos, “Splitting payments locally while routing
interdimensionally.” IACR Cryptol. ePrint Arch., vol. 2020, p. 555, 2020.

[23] C. Egger, P. Moreno-Sanchez, and M. Maffei, “Atomic multi-channel updates with constant
collateral in bitcoin-compatible payment-channel networks,” in ACM CCS 2019. ACM
Press, 2019, pp. 801–815.

[24] R. S. Engelschall, “Openssl: The open source toolkit for ssl/tls,” URL: http://www. openssl.
org, pp. 2001–04, 2001.

[25] A. Fiat and A. Shamir, “How to prove yourself: Practical solutions to identification and
signature problems,” in CRYPTO’86, ser. LNCS, A. M. Odlyzko, Ed., vol. 263. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 1987, pp. 186–194.

[26] T. K. Frederiksen, Y. Lindell, V. Osheter, and B. Pinkas, “Fast distributed rsa key gen-
eration for semi-honest and malicious adversaries,” in Annual International Cryptology
Conference. Springer, 2018, pp. 331–361.

[27] J. A. Garay and M. Jakobsson, “Timed release of standard digital signatures,” in FC 2002,
ser. LNCS, M. Blaze, Ed., vol. 2357. Southampton, Bermuda: Springer, Heidelberg,
Germany, Mar. 11–14, 2003, pp. 168–182.

[28] J. A. Garay and C. Pomerance, “Timed fair exchange of standard signatures: [extended
abstract],” in FC 2003, ser. LNCS, R. Wright, Ed., vol. 2742. Guadeloupe, French West
Indies: Springer, Heidelberg, Germany, Jan. 27–30, 2003, pp. 190–207.

[29] R. Gennaro and S. Goldfeder, “Fast multiparty threshold ecdsa with fast trustless setup,”
in Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications
Security. ACM, 2018, pp. 1179–1194.

37

[30] M. Green and I. Miers, “Bolt: Anonymous payment channels for decentralized currencies,”
in ACM CCS 2017, B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, Eds. Dallas,
TX, USA: ACM Press, Oct. 31 – Nov. 2, 2017, pp. 473–489.

[31] C. Hanser, M. Rabkin, and D. Schröder, “Verifiably encrypted signatures: Security revisited
and a new construction,” in ESORICS 2015, Part I, ser. LNCS, G. Pernul, P. Y. A. Ryan,
and E. R. Weippl, Eds., vol. 9326. Vienna, Austria: Springer, Heidelberg, Germany,
Sep. 21–25, 2015, pp. 146–164.

[32] D. Johnson, A. Menezes, and S. Vanstone, “The elliptic curve digital signature algorithm
(ecdsa),” International Journal of Information Security, vol. 1, no. 1, pp. 36–63, Aug
2001. [Online]. Available: https://doi.org/10.1007/s102070100002

[33] J. Katz, Digital signatures. Springer Science & Business Media, 2010.

[34] J. Katz, A. Miller, and E. Shi, “Pseudonymous secure computation from time-lock puzzles,”
2014.

[35] R. Khalil and A. Gervais, “Revive: Rebalancing off-blockchain payment networks,” in ACM
CCS 2017, B. M. Thuraisingham, D. Evans, T. Malkin, and D. Xu, Eds. Dallas, TX,
USA: ACM Press, Oct. 31 – Nov. 2, 2017, pp. 439–453.

[36] R. Kumaresan and I. Bentov, “How to use bitcoin to incentivize correct computations,” in
ACM CCS 2014, G.-J. Ahn, M. Yung, and N. Li, Eds. Scottsdale, AZ, USA: ACM Press,
Nov. 3–7, 2014, pp. 30–41.

[37] R. Kumaresan, T. Moran, and I. Bentov, “How to use bitcoin to play decentralized poker,”
in ACM CCS 2015, I. Ray, N. Li, and C. Kruegel, Eds. Denver, CO, USA: ACM Press,
Oct. 12–16, 2015, pp. 195–206.

[38] R. W. F. Lai, V. Ronge, T. Ruffing, D. Schröder, S. A. K. Thyagarajan, and J. Wang,
“Omniring: Scaling private payments without trusted setup,” in Proceedings of the 2019
ACM SIGSAC Conference on Computer and Communications Security, ser. CCS ’19.
New York, NY, USA: Association for Computing Machinery, 2019, p. 31–48. [Online].
Available: https://doi.org/10.1145/3319535.3345655

[39] H. Lin, R. Pass, and P. Soni, “Two-round and non-interactive concurrent non-malleable
commitments from time-lock puzzles,” in 58th FOCS, C. Umans, Ed. Berkeley, CA, USA:
IEEE Computer Society Press, Oct. 15–17, 2017, pp. 576–587.

[40] J. Lind, O. Naor, I. Eyal, F. Kelbert, P. Pietzuch, and E. G. Sirer, “Teechain: Reducing
storage costs on the blockchain with offline payment channels,” in Proceedings of the 11th
ACM International Systems and Storage Conference. ACM, 2018, pp. 125–125.

[41] Y. Lindell, “Fast secure two-party ecdsa signing,” in Annual International Cryptology Con-
ference. Springer, 2017, pp. 613–644.

[42] Y. Lindell and A. Nof, “Fast secure multiparty ecdsa with practical distributed key genera-
tion and applications to cryptocurrency custody,” in Proceedings of the 2018 ACM SIGSAC
Conference on Computer and Communications Security. ACM, 2018, pp. 1837–1854.

[43] ——, “Fast secure multiparty ECDSA with practical distributed key generation and appli-
cations to cryptocurrency custody,” in ACM CCS 2018, D. Lie, M. Mannan, M. Backes,
and X. Wang, Eds. Toronto, ON, Canada: ACM Press, Oct. 15–19, 2018, pp. 1837–1854.

38

https://doi.org/10.1007/s102070100002
https://doi.org/10.1145/3319535.3345655

[44] B. Lynn et al., “Pbc library,” Online: http://crypto. stanford. edu/pbc, vol. 59, pp. 76–99,
2006.

[45] G. Malavolta, P. Moreno-Sanchez, A. Kate, M. Maffei, and S. Ravi, “Concurrency and pri-
vacy with payment-channel networks,” in ACM CCS 2017, B. M. Thuraisingham, D. Evans,
T. Malkin, and D. Xu, Eds. Dallas, TX, USA: ACM Press, Oct. 31 – Nov. 2, 2017, pp.
455–471.

[46] G. Malavolta, P. Moreno-Sanchez, C. Schneidewind, A. Kate, and M. Maffei, “Anonymous
multi-hop locks for blockchain scalability and interoperability,” in NDSS 2019. San Diego,
CA, USA: The Internet Society, Feb. 24-27, 2019.

[47] G. Malavolta and S. A. K. Thyagarajan, “Homomorphic time-lock puzzles and applica-
tions,” in CRYPTO 2019, Part I, ser. LNCS, H. Shacham and A. Boldyreva, Eds. Santa
Barbara, CA, USA: Springer, Heidelberg, Germany, Aug. 18–22, 2019, pp. 620–649.

[48] G. Maxwell, A. Poelstra, Y. Seurin, and P. Wuille, “Simple schnorr multi-signatures with
applications to bitcoin,” Cryptology ePrint Archive, Report 2018/068, 2018, https://eprint.
iacr.org/2018/068.

[49] A. Miller, I. Bentov, S. Bakshi, R. Kumaresan, and P. McCorry, “Sprites and state channels:
Payment networks that go faster than lightning,” in FC 2019, ser. LNCS. Springer,
Heidelberg, Germany, 2019, pp. 508–526.

[50] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system,” 2008.

[51] P. Paillier, “Public-key cryptosystems based on composite degree residuosity classes,” in
EUROCRYPT’99, ser. LNCS, J. Stern, Ed., vol. 1592. Prague, Czech Republic: Springer,
Heidelberg, Germany, May 2–6, 1999, pp. 223–238.

[52] J. Poon and T. Dryja, “The bitcoin lightning network: Scalable off-chain instant pay-
ments,” 2016.

[53] R. L. Rivest, A. Shamir, and D. A. Wagner, “Time-lock puzzles and timed-release crypto,”
Cambridge, MA, USA, Tech. Rep., 1996.

[54] C.-P. Schnorr, “Efficient identification and signatures for smart cards,” in CRYPTO’89,
ser. LNCS, G. Brassard, Ed., vol. 435. Santa Barbara, CA, USA: Springer, Heidelberg,
Germany, Aug. 20–24, 1990, pp. 239–252.

[55] A. Shamir, “How to share a secret,” Communications of the ACM, vol. 22, no. 11, pp.
612–613, 1979.

[56] V. Sivaraman, S. B. Venkatakrishnan, K. Ruan, P. Negi, L. Yang, R. Mittal, G. Fanti, and
M. Alizadeh, “High throughput cryptocurrency routing in payment channel networks,” in
17th {USENIX} Symposium on Networked Systems Design and Implementation ({NSDI}
20), 2020, pp. 777–796.

[57] P. Wuille, “Schnorr’s bip,” 2018.

[58] J. H. Ziegeldorf, F. Grossmann, M. Henze, N. Inden, and K. Wehrle, “Coinparty: Secure
multi-party mixing of bitcoins,” in Proceedings of the 5th ACM Conference on Data and
Application Security and Privacy. ACM, 2015, pp. 75–86.

39

https://eprint.iacr.org/2018/068
https://eprint.iacr.org/2018/068

[59] J. H. Ziegeldorf, R. Matzutt, M. Henze, F. Grossmann, and K. Wehrle, “Secure and anony-
mous decentralized bitcoin mixing,” Future Generation Computer Systems, vol. 80, pp.
448–466, 2018.

A Cryptographic Building Blocks

A.1 Digital Signatures

Definition 4 (Digital Signatures). A (digital) signature scheme consists of three probabilistic
polynomial time algorithms (KGen, Sign, Vf) such that:

• (pk , sk)← KGen(1λ): the key generation algorithm takes as input a security parameter 1λ

and outputs a pair of keys (pk , sk). We assume that pk and sk each has length at least λ,
and that λ can be determined from pk or sk.

• σ ← Sign(sk ,m): the signing algorithm takes as input a private key sk and a message m
from some message space (that may depend on pk). It outputs a signature σ.

• 0/1 ← Vf(pk ,m, σ): the deterministic verification algorithm Vf takes as input a public
key pk, a message m, and a signature σ. It outputs a bit b, with b = 1 meaning valid and
b = 0 meaning invalid.

It is required that except with negligible probability over (pk , sk) output by KGen(1λ), it holds
that Vf(pk ,m,Sign(sk ,m)) = 1 for every (legal) message m.

Definition 5. A signature scheme DS = (KGen,Sign,Vf) is existentially unforgeable under an
adaptive chosen-message attack, or just secure, if for all probabilistic polynomial-time adver-
saries A, there is a negligible function negl such that:

Pr
[
ExpEUFCMAA,DS(λ) = 1

]
≤ negl

ExpEUFCMAA,DS(λ)

Q := ∅
(pk , sk)← KGen(1λ)

(m∗, σ∗)← ASignO(pk)

b∗ = Vf(pk ,m∗, σ∗) ∧ (m∗ /∈ Q)

return b∗

Oracle SignO(m)

σ ← Sign(sk ,m)

Q := Q ∪ {σ}
return σ

Figure 15: Experiment for unforgeability of the signature scheme DS

A.2 Time-Lock Puzzles

We recall the definition of standard time-lock puzzles [11]. For conceptual simplicity we consider
only schemes with binary solutions.

Definition 6 (Time-Lock Puzzles). A time-lock puzzle is a tuple of two algorithms (PGen,
PSolve) defined as follows.

• Z ← PGen(T, s) a probabilistic algorithm that takes as input a hardness-parameter T and
a solution s ∈ {0, 1}, and outputs a puzzle Z.

40

• s ← PSolve(Z) a deterministic algorithm that takes as input a puzzle Z and outputs a
solution s.

Definition 7 (Correctness). For all λ ∈ N, for all polynomials T in λ, and for all s ∈ {0, 1},
it holds that s = PSolve(PGen(T, s)).

Definition 8 (Security). A scheme (PGen,PSolve) is secure with gap ε < 1 if there exists a
polynomial T̃(·) such that for all polynomials T(·) ≥ T̃(·) and every polynomial-size adversary
A = {Aλ}λ∈N of depth ≤ Tε(λ), there exists a negligible function µ(·), such that for all λ ∈ N
it holds that

Pr
[
b← A(Z) : Z ← PGen(T(λ), b)

]
≤ 1

2
+ µ(λ).

A.3 Homomorphic Time-Lock Puzzles

Definition 9 (Homomorphic Time-Lock Puzzles [47]). Let C = {Cλ}λ∈N be a class of circuits
and let S be a finite domain. A homomorphic time-lock puzzle (HTLP) with respect to C
and with solution space S is tuple of four algorithms (HTLP.PSetup,HTLP.PGen,HTLP.PSolve,
HTLP.PEval) defined as follows.

• pp← HTLP.PSetup(1λ,T) a probabilistic algorithm that takes as input a security param-
eter 1λ and a time hardness parameter T, and outputs public parameters pp.

• Z ← HTLP.PGen(pp, s) a probabilistic algorithm that takes as input public parameters pp,
and a solution s ∈ S, and outputs a puzzle Z.

• s ← HTLP.PSolve(pp, Z) a deterministic algorithm that takes as input public parameters
pp and a puzzle Z and outputs a solution s.

• Z ′ ← HTLP.PEval(C, pp, Z1, . . . , Zn) a probabilistic algorithm that takes as input a circuit
C ∈ Cλ, public parameters pp and a set of n puzzles (Z1, . . . , Zn) and outputs a puzzle Z ′.

Security requires that the solution of the puzzles is hidden for all adversaries that run in
(parallel) time less than T. Here we consider a basic version where the time is counted from
the moment the public parameters are published.

Definition 10 (Security of HTLP). An HTLP scheme consisting of HTLP.PSetup,HTLP.PGen,
HTLP.PSolve,HTLP.PEval, is secure with gap ε < 1 if there exists a polynomial T̃(·) such that
for all polynomials T(·) ≥ T̃(·) and every polynomial-size adversary (A1,A2) = {(A1,A2)λ}λ∈N
where the depth of A2 is bounded from above by Tε(λ), there exists a negligible function µ(·),
such that for all λ ∈ N it holds that

Pr

b← A2(pp, Z, τ) :

(τ, s0, s1)← A1(1
λ)

pp← HTLP.PSetup(1λ,T(λ))
b←$ {0, 1}
Z ← HTLP.PGen(pp, sb)

 ≤ 1

2
+ µ(λ)

and (s0, s1) ∈ S2.

Definition 11 (Compactness). Let C = {Cλ}λ∈N be a class of circuits (along with their respective
representations). An HTLP scheme (HTLP.PSetup,HTLP.PGen,HTLP.PSolve,HTLP.PEval) is
compact (for the class C) if for all λ ∈ N, all polynomials T in λ, all circuits C ∈ Cλ and
respective inputs (s1, . . . , sn) ∈ Sn, all pp in the support of HTLP.PSetup(1λ,T), and all Zi in
the support of HTLP.PGen(pp, si), the following two conditions are satisfied:

• There exists a fixed polynomial p(·) such that |Z| = p(λ, |C(s1, . . . , sn)|), where Z ←
HTLP.PEval(C, pp, Z1, . . . , Zn).

• There exists a fixed polynomial p̃(·) such that the runtime of HTLP.PEval(C, pp, Z1, . . . , Zn)
is bounded by p̃(λ, |C|).

41

B More Related Work

Lightning Network is a real world company that offers payment channel services over Bitcoin
using Hash Time Lock Contracts (HTLC). Malavolta et al. [45] proposed a solution that ensures
that users involved in a single payment are not linked by an on-chain observer. Malavolta et
al. [46] soon improved upon their result where now the locks were just signatures instead of hash
values thereby not requiring any script. However, neither proposal deals with timing correlation
that is leaked on the chain. An intelligent attacker could observe the time-lock information in the
transactions and deduce the users involved in a payment. Time-locking of transactions in Bitcoin
is also used to realize various notions of fairness in secure computations [10, 36, 37]. If a user
fails to respond within some specified time, a transaction goes on chain that either financially
penalizes him or ensures he does not obtain any coins. Apart from on-chain privacy, these
applications do not work with blockchains that do not offer the required time-lock functionalities.
Green and Miers presented BOLT [30], a hub-based privacy-preserving payment for PCNs using
cryptographic primitives available in Zcash. Some of the other existing PCN proposals with a
trusted execution environment [40] or with a Turing complete scripting language [20,21,35,49]
compatible with Ethereum.

C Security analysis of VTS constructions

C.1 Proof of Theorem 1 and Theorem 2

Proof. We show that the protocol (Figure 2) is private against an adversary of depth bounded
by Tε, for some non-negative ε < 1. We now gradually change the simulation through a series
of hybrids and then we argue about the proximity of neighbouring experiments.

Hybrid H0 : This is the original execution.

Hybrid H1 : This is identical to the previous hybrid except that the random oracle is simulated
by lazy sampling. In addition a random set I∗ (where |I∗| = t − 1) is sampled ahead of time,
and the output of the random oracle on the cut-and-choose instance is programmed to I∗. Note
that the changes of this hybrid are only syntactical and therefore the distribution is unchanged.

Hybrid H2 : In this hybrid we sample a simulated common reference string crs range. By the
zero-knowledge property of (ZKsetup,ZKprove,ZKverify) this change is computationally indis-
tinguishable.

Hybrid H3 . . .H3+n : In the hybrid H3+i, for all i ∈ [n], the proof πrange,i is computed via the
simulator provided by the underlying NIZK proof. By the zero-knowledge property of (ZKsetup,
ZKprove,ZKverify), the distance between neighbouring hybrids is bounded by a negligible func-
tion in the security parameter.

Hybrid H3+n . . .H3+2n−t+1 : In the i-th hybrid H3+i, for all i ∈ [n − (t − 1)], the puzzle cor-

responding to the i-th element of the set Ī∗ is computed as LHTLP.PGen(pp, 0λ; ri), where Ī∗

is the complement of I∗. Since the distinguisher is depth-bounded, indistinguishability follows
from an invocation of the security of LHTLP..

Hybrid H3+2n−t+2 : In this hybrid the prover behaves as follows. For all i ∈ I∗ it samples a
uniform αi ← Zq and sets hi = gαi0 and computes the puzzle as described in the protocol. On
the other hand, for all i /∈ I∗ it computes hi as

hi =

 pk∏
j∈I∗ h

`j(0)
j

`i(0)
−1

.

42

The rest of the execution is unchanged. Note that for all i /∈ I∗ we have that∏
j∈I∗

h
`j(0)
j · h`i(0)i = pk

as expected. It follows that the changes in this hybrid are only syntactical and the distribution
induced is identical to that of the previous hybrid.

Simulator S : The simulator is defined to be identical to the last hybrid. Note that no informa-
tion about the witness is used to compute the proof. This concludes our proof.

We now show that our protocol (Figure 2) is sound and the proof of Theorem 2.

Proof. We analyze the protocol in its interactive version and the soundness of non-interactive
protocol follows from the Fiat-Shamir transformation [25] for constant-round protocols. Let A
be an adversary that efficiently breaks the soundness of the protocol. In particular this means
that the adversary produces a commitment (Z1, . . . , Zn) such that for all Zi /∈ I it holds that
LHTLP.PSolve(pp, Zi) = σ̃i such that

e(g0, σ̃i) 6= e(hi, H(m)).

Assume the contrary, then we could recover a valid signature on m by interpolating σ̃i with
{σi}i∈I , which satisfy the above relation by definition of the verification algorithm. Further
observe that all puzzles (Z1, . . . , Zn) are well-formed, i.e., the solving algorithm always outputs
some well-defined value, except with negligible probability, by the soundness of the range NIZK.

It follows that, given (Z1, . . . , Zn) we can recover some set I ′ in polynomial time by solving
the puzzles and checking which of the signatures satisfy the above relation. In order for the
verifier to accept, it must be the case that I ′ = I which means that the prover correctly guesses
a random n-bit string uniformly chosen from the set of strings with exactly n/2-many 0’s. This

happens with probability exactly (n/2!)2

n! .
Observe that, in the non-interactive variant of the protocol, the above argument holds even

in the presence of an arbitrary (polynomial) number of simulated proofs, as long as the range
NIZK is simulation-sound. Therefore, if we instantiate the range NIZK with a simulation-sound
scheme, then so is the resulting VTS.

C.2 Proof of Theorem 3 and Theorem 4

Proof. We show that the protocol (Figure 3) is private against an adversary of depth bounded
by Tε, for some non-negative ε < 1. Consider the following sequence of hybrids.

Hybrid H0 . . .H3+2n−t+1 : Defined as in the proof of Theorem 1.

Hybrid H3+2n−t+2 : In this hybrid the prover behaves as follows. For all i ∈ I∗ it samples

a uniform (xi, ki) ← Zq and sets hi = gxi , Ri = gki , and si = ki + cxi and computes the
corresponding puzzle as described in the protocol. On the other hand, for all i /∈ I∗ it computes
hi as

hi =

 pk∏
j∈I∗ h

`j(0)
j

`i(0)
−1

and

Ri =

 R∏
j∈I∗ R

`j(0)
j

`i(0)
−1

.

43

The rest of the execution is unchanged. Note that for all i /∈ I∗ we have that∏
j∈I∗

h
`j(0)
j · h`i(0)i = pk and

∏
j∈I∗

R
`j(0)
j ·R`i(0)i = R

as expected. It follows that the changes in this hybrid are only syntactical and the distribution
induced by this hybrid is identical to that of the previous hybrid.

Hybrid H3+2n−t+3 : Defined as in the previous hybrid except that R is sampled uniformly over
G. Note that this does not change the distribution observed by the distinguisher.

Simulator S : The simulator is defined to be identical to the last hybrid. Note that no informa-
tion about the witness is used to compute the proof. This concludes our proof.

We show that the protocol (Figure 3) satisfies soundness which is the proof for Theorem 4.

Proof. As for the proof of Theorem 2 we assume that the challenge set is sampled interactively
by the verifier. The soundness of the non-interactive version follows by a standard argument.
Consider an adversary that can efficiently violate the soundness of the protocol. This implies
that such and adversary produces a commitment (R,Z1, . . . , Zn) such that for all Zi /∈ I it holds
that LHTLP.PSolve(pp, Zi) = s̃i where

gs̃i 6= Ri · hci .

Assume the contrary, then we could recover a valid signature on m by interpolating s̃i with
{si}i∈I , which gives us a valid signature (R, s) onm, by linearity. Further observe that all puzzles
(Z1, . . . , Zn) are well-formed, i.e., the solving algorithm always outputs some well-defined value,
except with negligible probability, by the soundness of the range NIZK.

It follows that, given (Z1, . . . , Zn) we can define some set I ′ in polynomial time by solving
the puzzles and checking which of the resulting s̃i satisfy the above relation. In order for the
verifier to accept, it must be the case that I ′ = I which means that the prover correctly guesses
a random n-bit string uniformly chosen from the set of strings with exactly n/2-many 0’s. This

happens with probability exactly (n/2!)2

n! .
As discussed in the proof of Theorem 2, the non-interactive variant of the protocol can be

shown to be simulation sound with the same argument, assuming a simulation-sound range
NIZK.

C.3 Proof of Theorem 5 and Theorem 6

Proof. We show that the protocol (Figure 4) is private against an adversary of depth bounded
by Tε, for some non-negative ε < 1. We do this by defining a series of hybrids.

Hybrid H0 . . .H3+2n−t+1 : Defined as in the proof of Theorem 1.

Hybrid H3+2n−t+2 : In this hybrid the prover does the following. For all i ∈ I∗ it samples a
uniform si ← Zq and sets Ri = Bsi = (gc · hr)si and computes the corresponding puzzle as
described in the protocol. On the other hand, for all i /∈ I∗ it computes Ri as

Ri =

 R∏
j∈I∗ R

`j(0)
j

`i(0)
−1

.

44

The rest of the execution is unchanged. Note that for all i /∈ I∗ we have that∏
j∈I∗

R
`j(0)
j ·R`i(0)i = R

as expected. It follows that the changes in this hybrid are only syntactical and the distribution
induced by this hybrid is identical to that of the previous hybrid.

Hybrid H3+2n−t+3 : Defined as the previous hybrid except that R = (x, y) is sampled as a
uniform point in the curve and r is set to x mod q. Again this change is only syntactical since
R is uniformly distributed in the previous hybrid.

Simulator S : The simulator is defined to be identical to the last hybrid. Note that no informa-
tion about the witness is used to compute the proof. This concludes our proof.

We now give the formal proof of Theorem 6.

Proof. As discussed in the proof of Theorem 2, it suffices to show that we can correctly recon-
struct a valid signature as long as at least one of the unopened puzzles contains some si such
that

Ri = (gc · hr)si .

Let I be the set of disclosed puzzles, then we have that

R
`i(0)
i ·

∏
j∈I

R
`j(0)
j = (gc · hr)si·`i(0) ·

∏
j∈I

(gc · hr)sj ·`j(0)

R = (gc · hr)si·`i(0)+
∑
i∈I sj ·`j(0)

R = (gc · hr)s̃

and x = r mod q, where R := (x, y), by definition of the verification equation. It follows that
(r, s̃) is a valid signature on m. Then the proof is completed by observing that a prover that
commits invalid si on all unopened puzzles must have guessed the challenge set I ahead of time,
which happens only with negligible probability.

We again stress that the non-interactive variant of the proof can be shown to be simulation-
sound with the same argument, assuming an appropriate instantiation of the range NIZK.

D Proof Analysis for Range Proofs

Soundness We now establish soundness of our protocol. As usual for Fiat-Shamir protocols,
we will consider soundness of the interactive protocol. Thus, fix time-lock puzzles Z1, . . . , Z`.
Since the public parameters pp are chosen honestly, each time-lock puzzle Zj has a unique
corresponding plaintext xj , i.e. the time-lock puzzles are perfectly binding commitments.

Now assume that Z1, . . . , Z` is a false statement, i.e. there exists an index j∗ such that
xj∗ /∈ [−L,L]. We now show that the verifier rejects the statement, except with negligible
probability.

Let t1, . . . , tk be the verifier’s challenge. We only consider a single index i and show that
the verifier accepts for this index with probability at most 1/2. It follows by a standard parallel
repetition argument that the verifier accepts with probability at most 2−k. Thus fix an index i.

Further fix all ti,j for j 6= j∗ for the moment. We distinguish two cases.

1. In this case it holds that yi+
∑

j∈[k],j 6=j∗ ti,jxj /∈ [−L/2, L/2]. Since ti,j∗ is uniform in {0, 1}, it

holds that Pr[ti,j∗ = 0] = 1
2 . Thus, it follows that Pr[yi +

∑
j∈[k] ti,jxj ∈ [−L/2, L/2]] ≤ 1/2.

45

2. In this case it holds that yi +
∑

j∈[k],j 6=j∗ ti,jxj ∈ [−L/2, L/2]. It follows that yi + xj∗ +∑
j∈[k],j 6=j∗ ti,jxj /∈ [−L/2, L/2] as xj∗ /∈ [−L,L]. Consequently, as ti,j∗ is uniform on {0, 1},

it holds that Pr[yi +
∑

j∈[k] ti,jxj ∈ [−L/2, L/2]] ≤ 1/2

Applying the law of total probability, i.e. marginalizing over all choices of ti,j for j 6= j∗,
Pr[Verifier accepts for index i] ≤ 1/2. It follows that Pr[Verifier accepts] ≤ 2−k.

Zero-Knowledge We now show that the proof-system is zero-knowledge. We do this by show-
ing that the corresponding interactive proof system is honest-verifier statistical zero-knowledge.
We use the following standard lemma, proven e.g. in [5].

Lemma 1. Let U[−r,r] be the uniform distribution on the interval [−r, r] and β ∈ Z. Then the
statistical distance between U[−r,r] and U[−r,r] + β is β/r.

Our simulator S is now given as follows.

– Input: Statement pp, Z1, . . . , Z` and challenge t1, . . . , t`
– Choose ṽ1, . . . , ṽk ← [−L/2, L/2] and w̃1, . . . , w̃k ← ZN .
– For i = 1, . . . , k compute Gi ← HTLP.PGen(pp, ṽi; w̃i).

– For i = 1, . . . , k set D̃i ← Gi ·
(∏`

j=1 Z
ti,j
j

)−1
.

– Output π ← (D̃i, ṽi, w̃i)i∈[k]

First note that the simulator S is efficient and produces an accepting proof π if the statement
is valid. We argue that the distributions produced by the prover and the simulator S are
statistically close, given that B/L is negligible. A reasonable practical choice of parameters
may be B/L = 2−50, i.e. B is 50 bits shorter than L.

To prove the ZK property, it is sufficient to argue that the (D1, . . . , Dk) produced by
the prover and (D̃1, . . . , D̃k) produced by the simulator are statistically close. Note that
the (D1, . . . , Dk) are uniquely specified by ((v1, w1), . . . , (vk, wk)) and the (D̃1, . . . , D̃k) by
((ṽ1, w̃1), . . . , (ṽk, w̃k)).

First note that the distributions of the wi and the w̃i are each i.i.d uniformly random.
Define the ỹi to be the plaintexts corresponding to the time-lock puzzles D̃i produced by the
simulator S. It holds for all i ∈ [k] that ỹi = ṽi −

∑`
j=1 ti,jxj , where as above the x1, . . . , x`

are the plaintexts corresponding to Z1, . . . , Z`. By Lemma 1 and a hybrid argument it follows
that (y1, . . . , yk) and (ỹ1, . . . , ỹk) have statistical distance at most k · B

L/2 = 2k · B/L, which is

negligible. This also implies that (D1, . . . , Dk) and (D̃1, . . . , D̃k) are statistically close.
We remark that since our simulator does not use a trapdoor, one can readily show that our

proof-system satisfies simulation-soundness, as is typical for proof-systems constructed via the
Fiat-Shamir methodology.

E Verifiable Timed Commitment

Verifiable Timed Commitments for signing keys are similar to VTS except that now the commit-
ter creates a commitment of a discrete log (signing key) instead of a signature. In the context
of a signature scheme, formally, the Commit algorithm outputs a timed commitment C to a
signing key corresponding to a public key and a proof π for the same. The definitions of privacy
and soundness follow same as VTS.

Theorem 8 (Privacy). Let (ZKsetup,ZKprove,ZKverify) be a NIZK for Lrange and let LHTLP.
be a secure time-lock puzzle. Then the protocol as described in Figure 16 satisfies privacy in the
random oracle model.

46

Setup: Same as Figure 2.
Commit and Prove: On input (crs,wit) the Commit algorithm does the following.

• Parse wit := sk , crs := (crs range, pp), pk = h as the public key
• For all i ∈ [t− 1] sample a uniform xi ← Zq and set hi := gxi

• For all i ∈ {t, . . . , n} compute

xi =

sk −
∑
j∈[t]

xj · `j(0)

 · `i(0)−1 and hi =

 pk∏
j∈[t] h

`j(0)
j

`i(0)
−1

where `i(·) is the i-th Lagrange polynomial basis.
• For i ∈ [n], generate puzzles with corresponding range proofs as shown below

ri ← {0, 1}λ, Zi ← LHTLP.PGen(pp, xi; ri)

πrange,i ← ZKprove(crs range, (Zi, a, b,T), (xi, ri))

• Compute I ← H ′ (pk , (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n))
• The Commit algorithm outputs C := (Z1, . . . , Zn,T) and
π := ({hi, πrange,i}i∈[n], I, {σi, ri}i∈I)

• Finally output (pk , C, π)

Verification: On input (crs, pk , C, π) the Vrfy algorithm does the following.

• Parse C := (Z1, . . . , Zn,T), π := ({hi, πrange,i}i∈[n], I, {xi, ri}i∈I) and crs := (crs range, pp)
• If any of the following conditions is satisfied output 0, else return 1:

1. There exists some j /∈ I such that
∏
i∈I h

`i(0)
i · h`j(0)j 6= pk

2. There exists some i ∈ [n] such that ZKverify(crs range, (Zi, a, b,T), πrange,i) 6= 1
3. There exists some i ∈ I such that Zi 6= LHTLP.PGen(pp, xi; ri) or hi = gxi

4. I 6= H ′ (pk , (h1, Z1, πrange,1), . . . , (hn, Zn, πrange,n))

Figure 16: Verifiable Timed commitments for signing keys of the form pk = gsk , sk ∈ {0, 1}λ

47

Proof. We show that the protocol (Figure 16) is private against an adversary of depth bounded
by Tε, for some non-negative ε < 1. We now gradually change the simulation through a series
of hybrids and then we argue about the proximity of neighbouring experiments.

Hybrid H0 : This is the original execution.

Hybrid H1 : This is identical to the previous hybrid except that the random oracle is simulated
by lazy sampling. In addition a random set I∗ (where |I∗| = t − 1) is sampled ahead of time,
and the output of the random oracle on the cut-and-choose instance is programmed to I∗. Note
that the changes of this hybrid are only syntactical and therefore the distribution is unchanged.

Hybrid H2 : In this hybrid we sample a simulated common reference string crs range. By the
zero-knowledge property of (ZKsetup,ZKprove,ZKverify) this change is computationally indis-
tinguishable.

Hybrid H3 . . .H3+n : In the hybrid H3+i, for all i ∈ [n], the proof πrange,i is computed via the
simulator provided by the underlying NIZK proof. By the zero-knowledge property of (ZKsetup,
ZKprove,ZKverify), the distance between neighbouring hybrids is bounded by a negligible func-
tion in the security parameter.

Hybrid H3+n . . .H3+2n−t+1 : In the i-th hybrid H3+i, for all i ∈ [n − (t − 1)], the puzzle cor-

responding to the i-th element of the set Ī∗ is computed as LHTLP.PGen(pp, 0λ; ri), where Ī∗

is the complement of I∗. Since the distinguisher is depth-bounded, indistinguishability follows
from an invocation of the security of LHTLP..

Hybrid H3+2n−t+2 : In this hybrid the prover behaves as follows. For all i ∈ I∗ it samples a
uniform xi ← Zq and sets hi = gxi and computes the puzzle as described in the protocol. On
the other hand, for all i /∈ I∗ it computes hi as

hi =

 pk∏
j∈I∗ h

`j(0)
j

`i(0)
−1

.

The rest of the execution is unchanged. Note that for all i /∈ I∗ we have that∏
j∈I∗

h
`j(0)
j · h`i(0)i = pk

as expected. It follows that the changes in this hybrid are only syntactical and the distribution
induced is identical to that of the previous hybrid.

Simulator S : The simulator is defined to be identical to the last hybrid. Note that no informa-
tion about the witness is used to compute the proof. This concludes our proof.

Theorem 9 (Soundness). Let (ZKsetup,ZKprove,ZKverify) be a NIZK for Lrange and let LHTLP.
be a time-lock puzzle with perfect correctness. Then the protocol as described in Figure 16
satisfies soundness in the random oracle model.

Proof. We analyze the protocol in its interactive version and the soundness of non-interactive
protocol follows from the Fiat-Shamir transformation [25] for constant-round protocols. Let
A be an adversary that efficiently breaks the soundness of the protocol. In particular this
means that the adversary produces a commitment (Z1, . . . , Zn) and for all Zi /∈ I it holds that
LHTLP.PSolve(pp, Zi) = x̃i such that

hi 6= gx̃i .

Assume the contrary, then we could recover a valid signing key by interpolating x̃i with {xi}i∈I ,
which satisfy the above relation of the public key and secret key. Further observe that all puzzles

48

(Z1, . . . , Zn) are well-formed, i.e., the solving algorithm always outputs some well-defined value,
except with negligible probability, by the soundness of the range NIZK.

It follows that, given (Z1, . . . , Zn) we can recover some set I ′ in polynomial time by solving
the puzzles and checking which of the signing keys satisfy the above relation. In order for the
verifier to accept, it must be the case that I ′ = I which means that the prover correctly guesses
a random n-bit string uniformly chosen from the set of strings with exactly n/2-many 0’s. This

happens with probability exactly (n/2!)2

n! .

F Security Analysis for PCN based on VTS

We formalize PCN and later discuss the security analysis.

F.1 Formalization of Payment Channel Network (PCNs)

Definition 12 (Payment Channel Network (PCN) [52]). A PCN is defined as graph G :=
(V,E), where V is the set of Bitcoin accounts and E is the set of currently open payment
channels. A PCN is defined with respect to a blockchain B and is equipped with the three
operations (openCh, closeCh, pay) described below:

• openCh(u1, u2, β, t, f) → {1, 0}. On input two Bitcoin addresses u1, u2 ∈ V , an initial
channel capacity β, a timeout t, and a fee value f , if the operation is authorized by u1,
and u1 owns at least β bitcoins, openCh creates a new payment channel (c〈u1,u2〉, β, f, t) ∈
E, where c〈u1,u2〉 is a fresh channel identifier. Then it uploads it to B and returns 1.
Otherwise, it returns 0.

• closeCh(c〈u1,u2〉, v) → {1, 0}. On input a channel identifier c〈u1,u2〉 and a balance v (i.e.,
the distribution of bitcoins locked in the channel between u1 and u2), if the operation is
authorized by both u1 and u2, closeCh removes the corresponding channel from G, includes
the balance v in B and returns 1. Otherwise, it returns 0.

• pay((c〈s,u1〉, . . . , c〈un,r〉), v) → {1, 0}. On input a list consisting of channel identifiers
(c〈s,u1〉, . . . , c〈un,r〉) and a payment value v, if the payment channels form a path from
the sender s to the receiver r and each payment channel c〈ui,ui+1〉 in the path has at least

a current balance γi ≥ v′i, where v′i = v −
∑i−1

j=1 fee(uj), the pay operation decreases the
current balance for each payment channel c〈ui,ui+1〉 by v′i and returns 1. Otherwise, none
of the balances at the payment channels is modified and the pay operation returns 0.

Here we give the formal proof of Theorem 7

Proof. In order to prove that protocol Γ is secure, we need to describe a simulator S that
simulates the PCN operations to an adversary. Below we describe the simulation for the channel
opening, channel closing and payment operation of FPCN . Let VTS constitute a signature
scheme (KGen, Sign,Vf) and (Commit,Vrfy,Open,ForceOp) that is private and sound. Let Svts be
the simulator guaranteed for the privacy property that simulates a proof without the knowledge
of the signature.
openCh(c〈u1,u2〉, β, t, f): Let u1 be the user that initiates the request. We have two cases to

analyze:

1. Corrupted u1: simulator S receives a (c〈u1,u2〉, β, t, f) request from the adversary
on behalf of u1 and initiates a two-user agreement protocol with A to convey upon a
local fresh channel identifier c〈u1,u2〉. If the protocol successfully terminates, S sends
(open, c〈u1,u2〉, β, t, f) to FPCN , which eventually returns (c〈u1,u2〉, h).

49

Open Channel: On input (open, c〈u,u′〉, v, u
′, t, f) from a user u, the functionality checks

whether c〈u,u′〉 is well-formed (contains valid identifiers and it is not a duplicate) and
eventually sends (c〈u,u′〉, v, t, f) to u′, who can either abort or authorize the operation. In the
latter case, the functionality appends the tuple (c〈u,u′〉, v, t, f) to B and the tuple
(c〈u,u′〉, v, t, h) to P, for some random h. The functionality returns h to u and u′.

Close Channel: On input (close, c〈u,u′〉, h) from either user u or u′, the ideal functionality
parses B for an entry (c〈u,u′〉, v, t, f) and P for an entry (c〈u,u′〉, v

′, t′, h), for h 6= ⊥. If
c〈u,u′〉 ∈ CL and t > |B| or t′ > |B|, the functionality aborts. Otherwise the functionality adds
(c〈u,u′〉, u

′, v′, t′) to B and adds c〈u,u′〉 to CL. The functionality then notifies other parties with
the message (c〈u,u′〉,⊥, h).

Pay: On input (pay, v, c〈u0,u1〉, . . . , c〈un,un+1〉), (t0, . . . , tn)) from a user u0, the functionality
executes the following interactive protocol:

• For all i ∈ 1, . . . , (n+ 1), it samples a random hi and parses B for an entry of the form
(c〈ui−1,u′i〉, vi, t

′
i, fi). If such an entry does exist, it sends the tuple

(hi, hi+1, c〈ui−1,ui〉, c〈ui,ui+1〉, v−
∑n

j=i fj , ti−1, ti) to the user ui via an anonymous channel
(for the specific case of the receiver the tuple is only (hn+1, c〈un,un+1〉, v, tn)). Then it
checks whether for all entries of the form (c, v′, ·, ·) ∈ P it holds that v′ ≥ (v −

∑n
j=i fj)

and that ti−1 ≥ ti. If this is the case it adds di = (c〈ui−1,ui〉, (v
′
i − (v −

∑n
j=i fj), ti,⊥) to

P, where (c〈ui−1,ui〉, v
′
i, ·, ·) ∈ P is the entry with the lowest v′i. If any of the conditions

above is not met, it removes from P all the entries di added in this phase and aborts.
• For all i ∈ {(n+ 1), . . . , 1}, it queries all ui with (hi, hi+1), through an anonymous

channel. Each user can reply with either > or ⊥. Let j be the index of the user that
returns ⊥ such that for all i > j : ui returned >. If no user returned ⊥ we set j = 0.

• For all i ∈ {j + 1, . . . , n} the ideal functionality updates di ∈ P (defined as above) to
(−,−,−, hi) and notifies the user of the success of the operation with with some
distinguished message (success, hi, hi+1). For all i ∈ {0. . . . , j} (if j 6= 0), it removes di
from P and notifies the user with the message (⊥, hi, hi+1).

Figure 17: Ideal functionality FPCN for Payment Channel Networks (PCN) from [45]

50

2. Corrupted u2: S receives a message (c〈u1,u2〉, v, t, f) from FPCN engages the adversary
A in a two-user agreement protocol on behalf of u1 for the opening of the channel. If the
execution is successful, S sends an accepting message to FPCN which returns (c〈u1,u2〉, h),
otherwise it outputs ⊥.

If the opening was successful the simulator initializes an empty list Pc〈u1,u2〉 and appends the
value (h, v,⊥,>).

closeCh(c〈u1,u2〉, v): Let u1 be the user that initiates the request. We have two cases to analyze:

1. Corrupted u1: S receives a closing request from the adversary on behalf of u1, then it
fetches Pc〈u1,u2〉 for some value (h, v, x, y). If such a value does not exist then it aborts.
Otherwise it sends (close, c〈u1,u2〉, h) to FPCN .

2. Corrupted u2: S receives (c〈u1,u2〉, h,⊥) from FPCN and simply notifies A of the closing
of the channel c〈u1,u2〉.

pay((c〈u0,u1〉, . . . , c〈un,un+1〉), v): We consider the individual cases where different users executing

this operation are corrupted. Since different users follow different algorithms, namely for sender,
receiver and an intermediate user, we have different simulation strategies for each of them. In
this regard, let S = (SS ,SR,SI,i), where each simulator simulates the view for the respective
cases.

Corrupted Sender: The simulation outline follows a series of hybrid simulators starting from

the real world experiment. In more detail, consider the following simulated executions:

Simulator S0: behaves exactly as in the real world execution.
Simulator S1: the execution follows the same as in S0 with the exception that the VTS proof π
received by the adversary is one that is simulated using Svts instead of the real prover.

Simulator S2: the execution is along the same lines as in S1 except that it aborts by outputting
abortforge when the adversary sends (C ′2, σ

′
1,pay , σ0,aid) to FB where C ′2 6= C2 when C2 is the

steal contract received from the simulator on behalf of U1 and Vf(pk1,pay , C
′
2, σ
′
1,pay) = 1.

Simulator S3: the execution is the same as in S2 except that the simulator aborts with a message
abortpuzzle if the adversary sends (c2, σ1,pay , σ0,aid) before a factor ε of time T0. Note that the
simulator had given the adversary C which is a commitment to σ1,pay with hardness T0.

We now discuss the indistinguishability in the executions of these simulators.
S0 ≈c S1: since the only difference between the executions is that Svts is used to simulate the VTS
proof π, the indistinguishability follows from privacy of VTS. Meaning that, if the executions
are distinguishable by a PPT distinguisher D, one can construct a distinguisher that breaks
the privacy of the VTS proof with non-negligible probability. Since this is a contradiction, it
follows that the executions are indistinguishable.

S1 ≈c S2: the only difference is that S2 aborts with a message abortforge. The event when S2
outputs abortforge is when the adversary sends (C ′2, σ

′
1,pay , σ0,aid) where C ′2 6= C2 and C2 is the

steal contract received from the simulator and Vf(pk1,pay , C
′
2, σ
′
1,pay) = 1. Given an adversary

that enables this event with non-negligible probability, one can construct a PPT adversary A′
that outputs (C ′2, σ1,pay) as a signature forgery for the key pk1,pay . Since (KGen,Sign,Vf) is
unforgeable, this is a contradiction. Therefore

Pr[S2 outputs abortforge] ≤ negl

. Thus it is infeasible for a PPT distinguisher D to distinguish between the executions.

51

S2 ≈c S3: the only difference in the executions is that S3 aborts with abortpuzzle. The event
when this happens is if the adversary is able to retrieve σ1,pay from the VTS commitment
of hardness T0 a significant fraction of time earlier. We argue that if there exists such an
adversary A, we can construct an adversary A′ that simply runs A and breaks the ε privacy of
the VTS commitment. Note that A′ is depth-T0 bounded as A outputs the solution to a T hard
commitment in less than ε fraction of T0. Therefore, we have Pr[S3 outputs abortpuzzle] ≤ negl .
Therefore the two simulations are computationally indistinguishable.

Simulator SS : follows the same execution as S3 and therefore the simulated execution of SS is
indistinguishable from that of the real world execution for a corrupted sender.

Notice that in SS , it is guaranteed that the adversary cannot send the steal contract
C2 := StU0,U1

(µ1, addr1,pay , addr0,steal , pk0,aid) with valid signatures before T0. However, once
time T0 has passed, SS will send C2 with valid signatures to FB. If PU0,U1

(lid0, µ1, addr0,pay ,
addr1,pay , pk0,aid) is recorded in FB, the constraint Const(addr1,pay , pk0,aid) ensures that for
time δ since PU0,U1

was recorded in FB, coins cannot be spent from addr1,pay . This ensures that
U0 can steal the coins from addr1,pay during this δ time interval using C2 if time T0 has passed
and not before. This securely realizes the payment expiry of FPCN where the user U1 does not
get paid after time T0 has passed.
Corrupted Receiver: The simulation outline follows a series of hybrid simulators starting

from the real world experiment. In more detail, consider the following simulated executions:

Simulator S0: Gets as input (hn+1, c〈un,un+1〉, v, tn) from FPCN . It gives the adversary as in-
put (Un, v, tn, v, crs) where crs is generated by the simulator and behaves like the real world
execution.
Simulator S1: behaves exactly like S0 except that when it receives (C2, C, π), it checks if
Vrfy(C, π) = success. If the check holds, it does the following:

• Obtain σ ← ForceOp(Z)
• Abort by outputting abortsound if the above step fails or if Vf(pkn+1,pay , C2, σ) 6= 1

Note that S1 is not depth bounded and therefore can force open the VTS commitment. Now
we argue that the following holds:
S0 ≈c S1: the only difference between the executions is that the simulator S1 outputs abortsound
when the proof π verifies but the commitment Z does not embed the correct solution as per
the statement C. One can see that given VTS proof is sound with negligible soundness error,
we have Pr[S1 outputs abortsound] ≤ negl . Therefore the executions are indistinguishable for a
PPT distinguisher D.

Simulator SR: follows the same execution as S1 and therefore the simulated execution of SS is
indistinguishable from the real world execution for a corrupted receiver.

Corrupted Intermediate User Ui: The simulation outline follows a series of hybrid sim-
ulators starting from the real world experiment. On a high level, the simulation has to do a
combination of what the above simulations for corrupted sender and corrupted receiver had to
do. This is because the intermediate user Ui ’acts’ as a receiver for user Ui−1 and ’acts’ as a
sender to user Ui+1. In more detail, consider the following simulated executions:

Simulator S0: The simulator gets as input (hi, hi+1, c〈ui−1,ui〉, c〈ui,ui+1〉, v, ti−1, ti) from FPCN .
Give the adversary as input (Ui−1, Ui+1, v+fee(Ui), ti−1, ti, fwd, crs). It then continues to behave
like in the real world execution.
Simulator S1: the execution follows the same as in S1 with the exception that the VTS proof
π′ received by the adversary is one that is simulated using Svts.
Simulator S2: behaves exactly like S1 except that when it receives (C2, C, π) from the adversary
on behalf of user Ui−1, it checks if Vrfy(C, π) = success. If the check holds, it does the following:

52

• Obtain σ ← ForceOp(Z)
• Abort by outputting abortsound if the above step fails or if Vf(pk i,pay , C2, σ) 6= 1

Simulator S3: the execution is along the same lines as in S2 except that it aborts by outputting
abortforge when the adversary sends (C ′′2 , σ

′′
i+1,pay , σ

′
i,aid) to FB where C ′′2 6= C ′2 when C ′2 is the

steal contract received from the simulator on behalf of Ui+1 and Vf(pk i+1,pay , C
′′
2 , σ

′′
i+1,pay) = 1.

Simulator S4: the execution is the same as in S3 except that the simulator aborts with a message
abortpuzzle if the adversary sends (c2, σi+1,pay , σi,aid) before a factor ε of time Ti. Note that the
simulator had given the adversary C which was a VTS commitment of hardness T0.

The indistinguishability of the above simulated executions follows similar arguments as we
saw for the cases of corruption of sender and receiver. More specifically, we have S0 ≈c S1
given that the VTS proof, is private. We then have S1 ≈c S2 due to the simulation soundness
of the VTS proof. We reduce the indistinguishability to simulation soundness as the adversary
has access to simulated proofs for the same language (proof is simulated using Svts). We have
S2 ≈c S3 due to the unforgeability of the signature scheme. Finally we have S3 ≈c S4, due to
the security of the privacy of VTS commitment against depth-Ti bounded adversaries as argued
in the case of the corrupted sender.

Simulator SI,i, 0 < i < n+ 1 follows the same execution as S4 and therefore the simulated ex-
ecution of SI,i is indistinguishable from the real world execution for a corrupted intermediate
user.

Similar to the case in corrupted sender, we securely realize the payment expiry of FPCN

using time-lock puzzles. User Ui can use the steal contract StUi,Ui+1
(µi+1, addr i+1,pay , addr i,steal ,

pk i,aid) to take the coins back from Ui+1 after time Ti has elapsed and not before (due to the
security of time-lock puzzles).

Note that all users have access to a getStatus interface and they might be able to query FL
on a certain lid and learn its status even when they are not involved in the generation of such
a lock. But it is easy to see that this happen only with negligible probability since it require
guessing lid , which is a string sampled uniformly at random.

We have thus described simulators SS ,SR,SI,i when different users are corrupted. In all
their simulated executions, the view of the adversary was independent of any secret of honest
parties. Moreover, FL guarantees balance and atomicity of payments.

53

	Introduction
	Applications of VTS
	Our Contributions

	Technical Overview
	Related Work

	Preliminaries
	Cryptographic Building Blocks
	Verifiable Timed Signatures

	Efficient VTS Constructions
	Verifiable Timed BLS Signatures (VT-BLS)
	Verifiable Timed Schnorr Signatures (VT-Schnorr)
	Verifiable Timed ECDSA Signatures (VT-ECDSA)
	Batching Puzzle Solving
	Range Proof for Homomorphic Time-Lock Puzzles
	On The Setup Assumption

	Applications Of VTS
	Payment Channel Network (PCNs)
	Payment Channels Without Time On Blockchain

	Multisig Without Time On Chain
	Fair Computation Without Timing On Chain
	Claim and Refund Functionality

	Performance Evaluation
	Setup and Preliminaries
	Performance Evaluation
	VTS and Lightning Network

	Conclusion And Future Work
	Cryptographic Building Blocks
	Digital Signatures
	Time-Lock Puzzles
	Homomorphic Time-Lock Puzzles

	More Related Work
	Security analysis of VTS constructions
	Proof of Theorem 1 and Theorem 2
	Proof of Theorem 3 and Theorem 4
	Proof of Theorem 5 and Theorem 6

	Proof Analysis for Range Proofs
	Verifiable Timed Commitment
	Security Analysis for PCN based on VTS
	Formalization of Payment Channel Network (PCNs)

